49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Significance of galactinol and raffinose family oligosaccharide synthesis in plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Galactinol and raffinose constitute a novel function to protect plants from oxidative damage.

          Galactinol synthase (GolS) is a key enzyme in the synthesis of raffinose family oligosaccharides that function as osmoprotectants in plant cells. In leaves of Arabidopsis (Arabidopsis thaliana) plants overexpressing heat shock transcription factor A2 (HsfA2), the transcription of GolS1, -2, and -4 and raffinose synthase 2 (RS2) was highly induced; thus, levels of galactinol and raffinose increased compared with those in wild-type plants under control growth conditions. In leaves of the wild-type plants, treatment with 50 mum methylviologen (MV) increased the transcript levels of not only HsfA2, but also GolS1, -2, -3, -4, and -8 and RS2, -4, -5, and -6, the total activities of GolS isoenzymes, and the levels of galactinol and raffinose. GolS1- or GolS2-overexpressing Arabidopsis plants (Ox-GolS1-11, Ox-GolS2-8, and Ox-GolS2-29) had increased levels of galactinol and raffinose in the leaves compared with wild-type plants under control growth conditions. High intracellular levels of galactinol and raffinose in the transgenic plants were correlated with increased tolerance to MV treatment and salinity or chilling stress. Galactinol and raffinose effectively protected salicylate from attack by hydroxyl radicals in vitro. These findings suggest the possibility that galactinol and raffinose scavenge hydroxyl radicals as a novel function to protect plant cells from oxidative damage caused by MV treatment, salinity, or chilling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.

            Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Understanding oxidative stress and antioxidant functions to enhance photosynthesis.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                26 August 2015
                2015
                : 6
                : 656
                Affiliations
                Division of Plant Biology, Bose Institute , Kolkata, India
                Author notes

                Edited by: Arnd G. Heyer, University of Stuttgart, Germany

                Reviewed by: Thomas Nägele, University of Vienna, Austria; Ellen Zuther, Max-Planck-Society, Germany

                *Correspondence: Arun L. Majumder and Sonali Sengupta, Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, C.I.T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India, lahiri@ 123456mail.jcbose.ac.in ; sonalisengupta2000@ 123456yahoo.co.in
                †Present address: Sritama Mukherjee, Department of Botany, Bethune College, Kolkata 700006, West Bengal, India

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2015.00656
                4549555
                26379684
                aed279d9-5bb0-4cb1-be2d-b99aae8a788b
                Copyright © 2015 Sengupta, Mukherjee, Basak and Majumder.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 May 2015
                : 07 August 2015
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 115, Pages: 11, Words: 8519
                Categories
                Plant Science
                Review

                Plant science & Botany
                raffinose synthase,stachyose synthase,galactinol synthase,stress,rfo
                Plant science & Botany
                raffinose synthase, stachyose synthase, galactinol synthase, stress, rfo

                Comments

                Comment on this article