19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel modes of RNA editing in mitochondria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene structure and expression in diplonemid mitochondria are unparalleled. Genes are fragmented in pieces (modules) that are separately transcribed, followed by the joining of module transcripts to contiguous RNAs. Some instances of unique uridine insertion RNA editing at module boundaries were noted, but the extent and potential occurrence of other editing types remained unknown. Comparative analysis of deep transcriptome and genome data from Diplonema papillatum mitochondria reveals ∼220 post-transcriptional insertions of uridines, but no insertions of other nucleotides nor deletions. In addition, we detect in total 114 substitutions of cytosine by uridine and adenosine by inosine, amassed into unusually compact clusters. Inosines in transcripts were confirmed experimentally. This is the first report of adenosine-to-inosine editing of mRNAs and ribosomal RNAs in mitochondria. In mRNAs, editing causes mostly amino-acid additions and non-synonymous substitutions; in ribosomal RNAs, it permits formation of canonical secondary structures. Two extensively edited transcripts were compared across four diplonemids. The pattern of uridine-insertion editing is strictly conserved, whereas substitution editing has diverged dramatically, but still rendering diplonemid proteins more similar to other eukaryotic orthologs. We posit that RNA editing not only compensates but also sustains, or even accelerates, ultra-rapid evolution of genome structure and sequence in diplonemid mitochondria.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          A whole-genome assembly of Drosophila.

          We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Evolution and tinkering.

            F Jacob (1977)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA.

              The mitochondrial cytochrome oxidase (cox) subunit II gene from trypanosomes contains a frameshift at amino acid 170. This gene is highly conserved in different trypanosome species, suggesting that it is functional. Sequence determination of coxII transcripts of T. brucei and C. fasciculata reveals four extra, reading frame-restoring nucleotides at the frameshift position that are not encoded in the DNA. Southern blot analysis of DNA of both trypanosome species failed to show the existence of a second version of the coxII gene. We conclude, therefore, that the extra nucleotides are added during or after transcription of the frameshift gene by an RNA-editing process.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                02 June 2016
                21 March 2016
                21 March 2016
                : 44
                : 10
                : 4907-4919
                Affiliations
                [1 ]Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics; Université de Montréal, Montreal, H3C 3J7, Canada
                [2 ]Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, D-04109, Germany
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 514 343 7936; Fax: +1 514 343 2210; Email: Gertraud.Burger@ 123456umontreal.ca
                []These authors contributed equally to the paper as first authors.
                Article
                10.1093/nar/gkw188
                4889940
                27001515
                ae81e0a8-2a7d-49dc-887f-2bf21ed02491
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 10 March 2016
                : 03 March 2016
                : 15 January 2016
                Page count
                Pages: 13
                Categories
                RNA
                Custom metadata
                02 June 2016

                Genetics
                Genetics

                Comments

                Comment on this article