20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retigeric Acid B Exhibits Antitumor Activity through Suppression of Nuclear Factor-κB Signaling in Prostate Cancer Cells in Vitro and in Vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-x L, cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis-based therapies.

          Many of today's medical illnesses can be attributed directly or indirectly to problems with apoptosis--a programmed cell-suicide mechanism. Disorders in which defective regulation of apoptosis contributes to disease pathogenesis or progression can involve either cell accumulation, in which cell eradication or cell turnover is impaired, or cell loss, in which the cell-suicide programme is inappropriately triggered. Identification of the genes and gene products that are responsible for apoptosis, together with emerging information about the mechanisms of action and structures of apoptotic regulatory and effector proteins, has laid a foundation for the discovery of drugs, some of which are now undergoing evaluation in human clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1.

            The process of tumorigenesis requires cellular transformation, hyperproliferation, invasion, angiogenesis, and metastasis. Several genes that mediate these processes are regulated by the transcription factor nuclear factor-kappaB (NF-kappaB). The latter is activated by various carcinogens, inflammatory agents, and tumor promoters. Thus, agents that can suppress NF-kappaB activation have the potential to suppress carcinogenesis. Ursolic acid, a pentacyclic triterpene acid, has been shown to suppress the expression of several genes associated with tumorigenesis, but whether ursolic acid mediates its effects through suppression of NF-kappaB is not understood. In the study described in the present report, we found that ursolic acid suppressed NF-kappaB activation induced by various carcinogens including tumor necrosis factor (TNF), phorbol ester, okadaic acid, H(2)O(2), and cigarette smoke. These effects were not cell type specific. Ursolic acid inhibited DNA binding of NF-kappaB consisting of p50 and p65. Ursolic acid inhibited IkappaBalpha degradation, IkappaBalpha phosphorylation, IkappaBalpha kinase activation, p65 phosphorylation, p65 nuclear translocation, and NF-kappaB-dependent reporter gene expression. Ursolic acid also inhibited NF-kappaB-dependent reporter gene expression activated by TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor, NF-kappaB-inducing kinase, IkappaBalpha kinase, and p65. The inhibition of NF-kappaB activation correlated with suppression of NF-kappaB-dependent cyclin D1, cyclooxygenase 2, and matrix metalloproteinase 9 expression. Thus, overall, our results indicate that ursolic acid inhibits IkappaBalpha kinase and p65 phosphorylation, leading to the suppression of NF-kappaB activation induced by various carcinogens. These actions of ursolic acid may mediate its antitumorigenic and chemosensitizing effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model.

              Increasing evidences indicate that CXCR4/CXCL12 signaling pathway plays a pivotal role in the process of distant site metastasis that accounts for more than 90% of prostate cancer related deaths in patients. Thus, novel drugs that can downregulate CXCR4/CXCL12 axis have a great potential in the treatment of metastatic prostate cancer. In this report, we tested an agent, ursolic acid (UA) for its ability to modulate CXCR4 expression in prostate cancer cell lines and inhibit metastasis in vivo in transgenic adenocarcinoma of mouse prostate (TRAMP) model. We observed that UA downregulated the expression of CXCR4 in prostate cancer cells irrespective of their HER2 status in a dose- and time-dependent manner. Neither proteasome inhibitor nor lysosomal stabilization had any effect on UA-induced decrease in CXCR4 expression. When investigated for the molecular mechanisms, it was observed that the downregulation of CXCR4 was due to transcriptional regulation as indicated by downregulation of mRNA expression, inhibition of NF-κB activation and modulation of chromatin immunoprecipitation activity. Suppression of CXCR4 expression by UA further correlated with the inhibition of CXCL12-induced migration and invasion in prostate cancer cells. Finally, we also found that UA treatment can inhibit metastasis of prostate cancer to distal organs, including lung and liver and suppress CXCR4 expression levels in the prostate tissues of TRAMP mice. Overall, our experimental findings suggest that UA exerts its antimetastatic effects through the suppression of CXCR4 expression in prostate cancer both in vitro and in vivo. Copyright © 2011 UICC.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                29 May 2012
                : 7
                : 5
                : e38000
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
                [2 ]Department of Natural Product Chemistry, Shandong University School of Pharmaceutical Sciences, Jinan, China
                [3 ]Department of Pharmacology and Toxicology, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
                [4 ]Department of Pharmacology, Shandong University School of Pharmaceutical Sciences, Jinan, China
                [5 ]Department of Urology, Mayo Clinical College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
                Wayne State University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: HQY HXL YQL. Performed the experiments: YQL. Analyzed the data: HQY YQL. Contributed reagents/materials/analysis tools: XYH TL YNC CYY. Wrote the paper: HQY HXL YQL.

                Article
                PONE-D-12-00495
                10.1371/journal.pone.0038000
                3362538
                22666431
                ae7edd60-8606-4eb3-95b7-c17b8f284b92
                Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 December 2011
                : 28 April 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                DNA-binding proteins
                Chemical Biology
                Drug Discovery
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                Nuclear Signaling
                Cell Death
                Cell Growth
                Chemistry
                Chemical Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article