1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Diversity and Population Structure of Portunustrituberculatus in Released and Wild Populations Based on Microsatellite DNA Markers from the Yangtze Estuary

      , , ,
      Diversity
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Portunus trituberculatus is an important economic species of crab that is artificially bred and released in the Yangtze River Estuary and its adjacent sea areas. Based on six microsatellite markers, we investigate the genetic diversity and structure of 101 P. trituberculatus specimens collected from two hatcheries in Nantong and Zhoushan that participated in stock enhancement in the year 2019. We compared these with 124 wild specimens caught from 13 localities in the estuary. Analysis of several genetic diversity parameters (NA, RS, I, HO, HE, FIS, and FST) for the 15 populations demonstrates that both released and wild populations possess relatively rich genetic diversity. Furthermore, the released groups demonstrate no less genetic variation between themselves than do the wild crabs. Most FIS values are greater than zero, which shows inbreeding is common among specimens with geographically open sites. However, insufficient sampling may have led to a wide distribution of null alleles, a Hardy–Weinberg test disequilibrium in microsatellite markers PN22 and P04, and a lack of crab genetic diversity in site 14. All populations (except locality 14) have not suffered the bottleneck effect. Four subgroups can be seen to roughly spread longitudinally along the sample area by performing pairwise comparisons of genetic distance and FST values among the populations. No obvious topological heterogeneity is discovered among the four subgroups in a phylogenetic tree. The existence of genetic exchange and differentiation among the subgroups is also verified using structure analysis. Therefore, based on this evidence, we propose that the hatchery stock enhancements performed in Nantong and Zhoushan result in no reduction in genetic diversity for wild populations in the Yangtze Estuary in 2019.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The neighbor-joining method: a new method for reconstructing phylogenetic trees.

          N Saitou, M Nei (1987)
          A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.

            The recently-developed statistical method known as the "bootstrap" can be used to place confidence intervals on phylogenies. It involves resampling points from one's own data, with replacement, to create a series of bootstrap samples of the same size as the original data. Each of these is analyzed, and the variation among the resulting estimates taken to indicate the size of the error involved in making estimates from the original data. In the case of phylogenies, it is argued that the proper method of resampling is to keep all of the original species while sampling characters with replacement, under the assumption that the characters have been independently drawn by the systematist and have evolved independently. Majority-rule consensus trees can be used to construct a phylogeny showing all of the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If a group shows up 95% of the time or more, the evidence for it is taken to be statistically significant. Existing computer programs can be used to analyze different bootstrap samples by using weights on the characters, the weight of a character being how many times it was drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show significant evidence for a group if it is defined by three or more characters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              genepop'007: a complete re-implementation of the genepop software for Windows and Linux.

              This note summarizes developments of the genepop software since its first description in 1995, and in particular those new to version 4.0: an extended input format, several estimators of neighbourhood size under isolation by distance, new estimators and confidence intervals for null allele frequency, and less important extensions to previous options. genepop now runs under Linux as well as under Windows, and can be entirely controlled by batch calls. © 2007 The Author.
                Bookmark

                Author and article information

                Contributors
                Journal
                DIVEC6
                Diversity
                Diversity
                MDPI AG
                1424-2818
                May 2022
                May 07 2022
                : 14
                : 5
                : 374
                Article
                10.3390/d14050374
                ae724b88-dd01-49ca-8940-01baba08bbfc
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article