1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      iPS cell-based therapy for Parkinson's disease: A Kyoto trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Following intensive efforts since their discovery little more than 10 years ago, cell replacement therapy using induced pluripotent stem (iPS) cells is now becoming reality. However, there remain several obstacles in the translation of basic research to clinical application, obstacles known as the “Valley of Death”. With regards to regenerative medicine using iPS cells for Parkinson's disease, we have developed a method for the 1) efficient induction of dopaminergic neurons from human iPS cells and 2) sorting dopaminergic progenitor cells using a floor plate marker, CORIN. The grafted CORIN + cells survived well and functioned as midbrain dopaminergic neurons in the Parkinson's disease model rats and monkeys, and showed minimal risk of tumor formation. Based on these results, we performed a pre-clinical study using a clinical-grade iPS cell line and finally started a clinical trial to treat Parkinson's disease patients in August 2018. Here, I discuss the key issues to crossing the Valley of Death: scientific rationale, pre-clinical study, and clinical trial.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling

          Current neural induction protocols in human ES cells (hESCs) rely on embryoid body formation, stromal feeder co-culture, or selective survival conditions; each strategy displaying significant drawbacks such as poorly defined culture conditions, protracted differentiation and low yield. Here we report that the synergistic action of two inhibitors of SMAD signaling, Noggin and SB431542, is sufficient for inducing rapid and complete neural conversion of hESCs under adherent culture conditions. Temporal fate analysis reveals a transient FGF5+ epiblast-like stage followed by PAX6+ neural cells competent of rosette formation. Initial cell density determines the ratio of CNS versus neural crest progeny. Directed differentiation of human iPSCs into midbrain dopamine and spinal motoneurons confirm robustness and general applicability of the novel induction protocol. Noggin/SB431542 based neural induction should greatly facilitate the use of hESC and hiPSCs in regenerative medicine and disease modeling and obviate the need for stromal feeder or embryoid body based protocols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development.

            The potential to generate virtually any differentiated cell type from embryonic stem cells (ESCs) offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Embryology has offered important insights into key pathways regulating ESC differentiation, resulting in advances in modeling gastrulation in culture and in the efficient induction of endoderm, mesoderm, and ectoderm and many of their downstream derivatives. This has led to the identification of new multipotential progenitors for the hematopoietic, neural, and cardiovascular lineages and to the development of protocols for the efficient generation of a broad spectrum of cell types including hematopoietic cells, cardiomyocytes, oligodendrocytes, dopamine neurons, and immature pancreatic beta cells. The next challenge will be to demonstrate the functional utility of these cells, both in vitro and in preclinical models of human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A more efficient method to generate integration-free human iPS cells.

              We report a simple method, using p53 suppression and nontransforming L-Myc, to generate human induced pluripotent stem cells (iPSCs) with episomal plasmid vectors. We generated human iPSCs from multiple donors, including two putative human leukocyte antigen (HLA)-homozygous donors who match ∼20% of the Japanese population at major HLA loci; most iPSCs are integrated transgene-free. This method may provide iPSCs suitable for autologous and allologous stem-cell therapy in the future.
                Bookmark

                Author and article information

                Contributors
                Journal
                Regen Ther
                Regen Ther
                Regenerative Therapy
                Japanese Society for Regenerative Medicine
                2352-3204
                15 September 2020
                March 2020
                15 September 2020
                : 13
                : 18-22
                Affiliations
                [1]Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
                Article
                S2352-3204(20)30061-4
                10.1016/j.reth.2020.06.002
                7794047
                33490319
                ae4a7c4a-f292-4d3f-97b4-a3635cf98986
                © 2020 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 June 2020
                : 18 June 2020
                Categories
                Original Article

                parkinson's disease,induced pluripotent stem cell,dopaminergic neuron,transplantation,translational research,clinical trial

                Comments

                Comment on this article