7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Polysulfide Electrocatalysis on Framework Porphyrin in High-Capacity and High-Stable Lithium–Sulfur Batteries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lithium–sulfur batteries with an ultrahigh theoretical energy density of 2600 Wh kg −1 are highly considered as desirable next-generation energy storage devices that will meet the growing demand of energy consumption worldwide. However, complicated sulfur redox reactions and polysulfide shuttling significantly postpone the applications of lithium–sulfur batteries with rapid capacity decay and low Coulombic efficiency. Herein, a unique strategy of polysulfide electrocatalysis is proposed to improve the kinetics of the sulfur species and inhibit polysulfide shuttling in working lithium–sulfur batteries. Inspired by a natural biocatalyst and congener oxygen electrocatalysis, porphyrin was selected as the electrocatalytic active site, and framework porphyrin (POF) electrocatalysts were rationally designed, precisely fabricated, and demonstrated superior full-scheme electrocatalytic performance with regard to improving the kinetics for polysulfide conversion, Li 2S nucleation, and dissolution of Li 2S to polysulfides, simultaneously. Consequently, the lithium–sulfur batteries with POF electrocatalysts achieve high capacity of 1611 mAh·g −1 at 0.1 C; outstanding stability with the capacity decay rate of 0.071% in 400 cycles, and satisfied performance with a high sulfur loading up to 4.3 mg·cm −2. The strategy of polysulfide electrocatalysis develops our chemical understanding of sulfur species in energy-related applications and inspires the electrocatalysis concept for extended energy conversion and storage systems based on multielectron redox reactions.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The path towards sustainable energy

          This Perspective provides an overview of the contributions of materials science to a sustainable energy future, and discusses possible regulatory paths to support this transition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts.

            Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The atom, the molecule, and the covalent organic framework.

              Just over a century ago, Lewis published his seminal work on what became known as the covalent bond, which has since occupied a central role in the theory of making organic molecules. With the advent of covalent organic frameworks (COFs), the chemistry of the covalent bond was extended to two- and three-dimensional frameworks. Here, organic molecules are linked by covalent bonds to yield crystalline, porous COFs from light elements (boron, carbon, nitrogen, oxygen, and silicon) that are characterized by high architectural and chemical robustness. This discovery paved the way for carrying out chemistry on frameworks without losing their porosity or crystallinity, and in turn achieving designed properties in materials. The recent union of the covalent and the mechanical bond in the COF provides the opportunity for making woven structures that incorporate flexibility and dynamics into frameworks.
                Bookmark

                Author and article information

                Journal
                CCS Chemistry
                CCS Chem
                Chinese Chemical Society
                2096-5745
                April 1 2019
                : 128-137
                Affiliations
                [1 ]Tsinghua University
                Article
                10.31635/ccschem.019.20180016
                ae425411-955c-4e74-8f0d-0f655a8055fd
                © 2019
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article