0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antifungal Action of Arabidopsis thaliana TCP21 via Induction of Oxidative Stress and Apoptosis

      , , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The realm of antimicrobial proteins in plants is extensive but remains relatively uncharted. Understanding the mechanisms underlying the action of plant antifungal proteins (AFPs) holds promise for antifungal strategies. This study aimed to bridge this knowledge gap by comprehensively screening Arabidopsis thaliana species to identify novel AFPs. Using MALDI-TOF analysis, we identified a member of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) family of transcription factors as a novel AFP, A. thaliana TCP21 (AtTCP21; accession number NP_196450). Bacterially purified recombinant AtTCP21 inhibited the growth of various pathogenic fungal cells. AtTCP21 was more potent than melittin, a well-known AFP, in combating Colletotrichum gloeosporioides. Growth inhibition assays against various fungal pathogens and yeasts confirmed the pH-dependent antimicrobial activity of AtTCP21. Without inducing any membrane alterations, AtTCP21 penetrates the fungal cell wall and membrane, where it instigates a repressive milieu for fungal cell growth by generating intracellular reactive oxygen species and mitochondrial superoxides; resulting in morphological changes and apoptosis. Our findings demonstrate the redox-regulating effects of AtTCP21 and point to its potential as an antimicrobial agent.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotic resistance-the need for global solutions.

          The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caspases 3 and 7: key mediators of mitochondrial events of apoptosis.

            The current model of apoptosis holds that upstream signals lead to activation of downstream effector caspases. We generated mice deficient in the two effectors, caspase 3 and caspase 7, which died immediately after birth with defects in cardiac development. Fibroblasts lacking both enzymes were highly resistant to both mitochondrial and death receptor-mediated apoptosis, displayed preservation of mitochondrial membrane potential, and had defective nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, the early apoptotic events of Bax translocation and cytochrome c release were also delayed. We conclude that caspases 3 and 7 are critical mediators of mitochondrial events of apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genetics of maize evolution.

              Maize and its closest wild relatives, the teosintes, differ strikingly in the morphology of their female inflorescences or ears. Despite their divergent morphologies, several studies indicate that some varieties of teosinte are cytologically indistinguishable from maize and capable of forming fully fertile hybrids with maize. Molecular analyses identified one form of teosinte (Zea mays ssp. parviglumis) as the progenitor of maize. Analyses of the inheritance of the morphological traits that distinguish maize and teosinte indicates that they are under the control of multiple genes and exhibit quantitative inheritance. Nevertheless, these analyses have also identified a few loci of large effect that appear to represent key innovations during maize domestication. Remaining challenges are to identify additional major and minor effect genes, the polymorphisms within these genes that control the phenotypes, and how the combination of the individual and epistatic effects of these genes transformed teosinte into maize.
                Bookmark

                Author and article information

                Contributors
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                September 2023
                September 15 2023
                : 12
                : 9
                : 1767
                Article
                10.3390/antiox12091767
                ae10b597-c994-45af-9020-3c1d89305b29
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article