1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers.
To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose on human hepatocellular carcinoma HepG2 cells.
A network pharmacology method was first used to predict the possible inhibition of hepatocellular carcinoma growth by 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) through the p53 signaling pathway. Next, the Cell Counting Kit (CCK-8) assay was performed to evaluate changes in the survival rate of human hepatocellular carcinoma HepG2 cells treated with different concentrations of the drug; flow cytometry was used to detect changes in cell cycle, apoptosis, mitochondrial membrane potential (MMP) and intracellular Ca2+ concentration; real-time fluorescence quantification and immunoblotting showed that the expression of P53 genes and proteins associated with the p53 signaling pathway was significantly increased by β-PGG treatment.
It was found that β-PGG significantly inhibited survival of HepG2 cells, promoted apoptosis, decreased MMP and intracellular Ca2+ concentration, upregulated P53 gene and protein expression, increased CASP3 expression, and induced apoptosis in HepG2 cells.
This study has shown that network pharmacology can accurately predict the target of β-PGG’s anti-hepatocellular carcinoma action. Moreover, it was evident that β-PGG can induce apoptosis in HepG2 cells by activating the p53 signaling pathway to achieve its anti-hepatocellular carcinoma effect in vitro.