8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diffusion of sylvatic yellow fever in the state of São Paulo, Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the sylvatic yellow fever (SYF) diffusion process in São Paulo (SP) between 2016 and 2019. We developed an ecological study of SYF through autochthonous human cases and epizootics of non-human primates (NHPs) that were spatiotemporally evaluated. We used kriging to obtain maps with isochrones representative of the evolution of the outbreak and characterized its diffusion pattern. We confirmed 648 human cases of SYF in SP, with 230 deaths and 843 NHP epizootics. Two outbreak waves were identified: one from West to East (2016 and 2017), and another from the Campinas region to the municipalities bordering Rio de Janeiro, Minas Gerais, and Paraná and those of the SP coast (2017–2019). The SYF outbreak diffusion process was by contagion. The disease did not exhibit jumps between municipalities, indicating that the mosquitoes and NHPs were responsible for transmitting the virus. There were not enough vaccines to meet the population at risk; hence, health authorities used information about the epizootic occurrence in NHPs in forest fragments to identify priority populations for vaccination.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence and potential for spread of Chikungunya virus in Brazil

          Background In December 2013, an outbreak of Chikungunya virus (CHIKV) caused by the Asian genotype was notified in the Caribbean. The outbreak has since spread to 38 regions in the Americas. By September 2014, the first autochthonous CHIKV infections were confirmed in Oiapoque, North Brazil, and in Feira de Santana, Northeast Brazil. Methods We compiled epidemiological and clinical data on suspected CHIKV cases in Brazil and polymerase-chain-reaction-based diagnostic was conducted on 68 serum samples from patients with symptom onset between April and September 2014. Two imported and four autochthonous cases were selected for virus propagation, RNA isolation, full-length genome sequencing, and phylogenetic analysis. We then followed CDC/PAHO guidelines to estimate the risk of establishment of CHIKV in Brazilian municipalities. Results We detected 41 CHIKV importations and 27 autochthonous cases in Brazil. Epidemiological and phylogenetic analyses indicated local transmission of the Asian CHIKV genotype in Oiapoque. Unexpectedly, we also discovered that the ECSA genotype is circulating in Feira de Santana. The presumed index case of the ECSA genotype was an individual who had recently returned from Angola and developed symptoms in Feira de Santana. We estimate that, if CHIKV becomes established in Brazil, transmission could occur in 94% of municipalities in the country and provide maps of the risk of importation of each strain of CHIKV in Brazil. Conclusions The etiological strains associated with the early-phase CHIKV outbreaks in Brazil belong to the Asian and ECSA genotypes. Continued surveillance and vector mitigation strategies are needed to reduce the future public health impact of CHIKV in the Americas. Electronic supplementary material The online version of this article (doi:10.1186/s12916-015-0348-x) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of species diversity on disease risk.

            The transmission of infectious diseases is an inherently ecological process involving interactions among at least two, and often many, species. Not surprisingly, then, the species diversity of ecological communities can potentially affect the prevalence of infectious diseases. Although a number of studies have now identified effects of diversity on disease prevalence, the mechanisms underlying these effects remain unclear in many cases. Starting with simple epidemiological models, we describe a suite of mechanisms through which diversity could increase or decrease disease risk, and illustrate the potential applicability of these mechanisms for both vector-borne and non-vector-borne diseases, and for both specialist and generalist pathogens. We review examples of how these mechanisms may operate in specific disease systems. Because the effects of diversity on multi-host disease systems have been the subject of much recent research and controversy, we describe several recent efforts to delineate under what general conditions host diversity should increase or decrease disease prevalence, and illustrate these with examples. Both models and literature reviews suggest that high host diversity is more likely to decrease than increase disease risk. Reduced disease risk with increasing host diversity is especially likely when pathogen transmission is frequency-dependent, and when pathogen transmission is greater within species than between species, particularly when the most competent hosts are also relatively abundant and widespread. We conclude by identifying focal areas for future research, including (1) describing patterns of change in disease risk with changing diversity; (2) identifying the mechanisms responsible for observed changes in risk; (3) clarifying additional mechanisms in a wider range of epidemiological models; and (4) experimentally manipulating disease systems to assess the impact of proposed mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic and epidemiological monitoring of yellow fever virus transmission potential

              The yellow fever virus (YFV) epidemic in Brazil is the largest in decades. The recent discovery of YFV in Brazilian Aedes species mosquitos highlights a need to monitor the risk of reestablishment of urban YFV transmission in the Americas. We use a suite of epidemiological, spatial, and genomic approaches to characterize YFV transmission. We show that the age and sex distribution of human cases is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally reveals an early phase of sylvatic YFV transmission and spatial expansion toward previously YFV-free areas, followed by a rise in viral spillover to humans in late 2016. Our results establish a framework for monitoring YFV transmission in real time that will contribute to a global strategy to eliminate future YFV epidemics.
                Bookmark

                Author and article information

                Contributors
                franciscochiara@usp.br
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 August 2021
                11 August 2021
                2021
                : 11
                : 16277
                Affiliations
                [1 ]GRID grid.11899.38, ISNI 0000 0004 1937 0722, Department of Epidemiology, , School of Public Health-University of Sao Paulo, ; Av. Dr. Arnaldo, 715, São Paulo, SP Brazil
                [2 ]GRID grid.419716.c, ISNI 0000 0004 0615 8175, Epidemiological Surveillance Center “Prof. Alexandre Vranjac” of the Health Secretariat of the State of São Paulo, ; São Paulo, SP Brazil
                [3 ]SUCEN, Endemics Control Superintendence, São Paulo, SP Brazil
                Article
                95539
                10.1038/s41598-021-95539-w
                8358007
                34381111
                ada4be44-b6b3-4055-afb8-d2c8b5b7385b
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 May 2021
                : 26 July 2021
                Funding
                Funded by: Brazilian National Research Council Grant
                Funded by: Research Fellow of Brazilian National Research Council - CNPq
                Award ID: 306025/2019-1
                Award Recipient :
                Funded by: São Paulo Research Foundation - FAPESP
                Award ID: 2020/01596-8
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                diseases,ecological epidemiology
                Uncategorized
                diseases, ecological epidemiology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content128

                Cited by4

                Most referenced authors569