Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
114
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Defining Gene-Phenotype Relationships in Acinetobacter baumannii through One-Step Chromosomal Gene Inactivation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Rates of infection with hospital-acquired Acinetobacter baumannii have exploded over the past decade due to our inability to limit persistence and effectively treat disease. A. baumannii quickly acquires antibiotic resistance, and its genome encodes mechanisms to tolerate biocides and desiccation, which enhance its persistence in hospital settings. With depleted antibiotic options, new methods to treat A. baumannii infections are desperately needed. A comprehensive understanding detailing A. baumannii cellular factors that contribute to its resiliency at genetic and mechanistic levels is vital to the development of new treatment options. Tools to rapidly dissect the A. baumannii genome will facilitate this goal by quickly advancing our understanding of A. baumannii gene-phenotype relationships. We describe here a recombination-mediated genetic engineering (recombineering) system for targeted genome editing of A. baumannii. We have demonstrated that this system can perform directed mutagenesis on wide-ranging genes and operons and is functional in various strains of A. baumannii, indicating its broad application. We utilized this system to investigate key gene-phenotype relationships in A. baumannii biology important to infection and persistence in hospitals, including oxidative stress protection, biocide resistance mechanisms, and biofilm formation. In addition, we have demonstrated that both the formation and movement of type IV pili play an important role in A. baumannii biofilm.

          IMPORTANCE

          Acinetobacter baumannii is the causative agent of hospital-acquired infections, including pneumonia and serious blood and wound infections. A. baumannii is an emerging pathogen and has become a threat to public health because it quickly develops antibiotic resistance, making treatment difficult or impossible. While the threat of A. baumannii is well recognized, our understanding of even its most basic biology lags behind. Analysis of A. baumannii cellular functions to identify potential targets for drug development has stalled due in part to laborious genetic techniques. Here we have pioneered a novel recombineering system that facilitates efficient genome editing in A. baumannii by single PCR products. This technology allows for rapid genome editing to quickly ascertain gene-phenotype relationships. To demonstrate the power of recombineering in dissecting A. baumannii biology, we use this system to establish key gene-phenotype relationships important to infection and persistence in hospitals, including oxidative stress protection, biocide resistance, and biofilm formation.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Primer3 on the WWW for General Users and for Biologist Programmers

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            H2S: a universal defense against antibiotics in bacteria.

            Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454.

              Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                5 August 2014
                Jul-Aug 2014
                : 5
                : 4
                : e01313-14
                Affiliations
                [ a ]Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
                [ b ]Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
                Author notes
                Address correspondence to Bryan W. Davies, bwdavies@ 123456austin.utexas.edu .
                [*]

                Present address: Nora C. Burdis, Washington University School of Medicine, St. Louis, Missouri, USA.

                Editor Louis Weiss, Albert Einstein College of Medicine

                Article
                mBio01313-14
                10.1128/mBio.01313-14
                4128354
                25096877
                ad9b6deb-355c-42f4-bf3a-f1bb344bd40d
                Copyright © 2014 Tucker et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 May 2014
                : 8 July 2014
                Page count
                Pages: 9
                Categories
                Research Article
                Custom metadata
                July/August 2014

                Life sciences
                Life sciences

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content14

                Cited by96

                Most referenced authors955