4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

          MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic targeting of microRNAs: current status and future challenges.

            MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that have crucial roles in regulating gene expression. Increasing evidence supports a role for miRNAs in many human diseases, including cancer and autoimmune disorders. The function of miRNAs can be efficiently and specifically inhibited by chemically modified antisense oligonucleotides, supporting their potential as targets for the development of novel therapies for several diseases. In this Review we summarize our current knowledge of the design and performance of chemically modified miRNA-targeting antisense oligonucleotides, discuss various in vivo delivery strategies and analyse ongoing challenges to ensure the specificity and efficacy of therapeutic oligonucleotides in vivo. Finally, we review current progress on the clinical development of miRNA-targeting therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family.

              In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1-4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1-9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10-23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.
                Bookmark

                Author and article information

                Journal
                Journal of Oral Pathology & Medicine
                J Oral Pathol Med
                Wiley
                09042512
                January 2018
                January 2018
                November 01 2017
                : 47
                : 1
                : 78-85
                Affiliations
                [1 ]Department of Oral Surgery and Pathology; School of Dentistry, Universidade Federal de Minas Gerais (UFMG); Belo Horizonte Brazil
                [2 ]Department of Dentistry; Universidade Estadual de Montes Claros (UNIMONTES); Montes Claros Brazil
                [3 ]Department of Pathology; Biological Sciences Institute; Universidade Federal de Minas Gerais (UFMG); Belo Horizonte Brazil
                [4 ]Stomatology Service; Odilon Behrens Hospital; Belo Horizonte Brazil
                [5 ]Centro de Pesquisas René Rachou (CPqRR); FIOCRUZ; Belo Horizonte Brazil
                Article
                10.1111/jop.12650
                29032608
                ad461b92-1b9b-44ea-92ad-4383fbba6985
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article