13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of cytochrome P450 1a1 and 1b1 in the metabolic activation of 7,12-dimethylbenz[a]anthracene and the effects of naturally occurring furanocoumarins on skin tumor initiation.

      Chemical Research in Toxicology
      9,10-Dimethyl-1,2-benzanthracene, metabolism, toxicity, Animals, Anticarcinogenic Agents, therapeutic use, Aryl Hydrocarbon Hydroxylases, Carcinogens, Cells, Cultured, Coumarins, pharmacology, Cytochrome P-450 CYP1A1, Cytochrome P-450 CYP1B1, Cytochrome P-450 Enzyme System, DNA Adducts, drug effects, Dose-Response Relationship, Drug, Female, Furocoumarins, Mice, Mice, Inbred SENCAR, Plant Extracts, Skin Neoplasms, chemically induced, prevention & control

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current study was designed to determine the mechanistic basis for differences in the effects of naturally occurring furanocoumarins on skin tumor initiation by 7,12-dimethylbenz[a]anthracene (DMBA). Female SENCAR mice were pretreated topically with bergamottin, imperatorin, or isopimpinellin (100-3200 nmol), 7,8-benzoflavone (7,8-BF, 5-40 nmol, a known inhibitor of DMBA skin carcinogenesis in mice), or acetone (vehicle control) 5 min prior to topical treatment with DMBA (10 nmol). Imperatorin, isopimpinellin, and 7,8-BF, but not bergamottin, significantly blocked total DMBA-DNA adduct formation. HPLC analysis of DNA adducts revealed that bergamottin preferentially inhibited formation of anti-DMBA diol-epoxide (DMBADE) derived DNA adducts, imperatorin, and isopimpinellin inhibited both anti- and syn- derived adducts, whereas 7,8-BF showed some selectivity for reduction of syn-DMBADE-DNA adducts. Mouse embryo fibroblast C3H/10T1/2 (10T1/2) cells, and mouse hepatoma-derived 1c1c7 (Hepa-1) cells, which preferentially express P450 1b1 and P450 1a1, respectively, were co-incubated with 2 microM bergamottin, imperatorin, isopimpinellin, and 7,8-BF, and with DMBA (2 microM). Hepa-1 cells (P450 1a1) formed mainly anti-DMBADE-DNA adducts. In contrast, 10T1/2 cells (P450 1b1) formed mainly syn-DMBADE-DNA adducts. Bergamottin inhibited DMBA metabolism to DMBA-3,4-diol and blocked DNA adduct formation in Hepa-1 cells, but had little effect in 10T1/2 cells. In contrast, 7,8-BF completely blocked DMBA metabolism and DNA adduct formation in 10T1/2 cells, but had little effect in Hepa-1 cells. Imperatorin and isopimpinellin inhibited DMBA bioactivation in both cell lines. These results indicate that bergamottin is a more selective inhibitor of P450 1a1 and overall a less effective inhibitor of the metabolic activation of DMBA in mouse epidermis. In contrast, imperatorin, isopimpinellin, and especially 7,8-BF, which block metabolic activation of DMBA in mouse epidermis, appear more selective for P450 1b1. On the basis of our studies using 10T1/2 cells and Hepa-1 cells, it appears that P450 1a1 is primarily responsible for converting DMBA-3,4-diol to anti-DMBADE, whereas P450 1b1 is primarily responsible for converting DMBA-3,4-diol to syn-DMBADE. These data demonstrate the role of P450 1a1 and 1b1 in the metabolic activation of DMBA in mouse epidermis and provide a mechanistic explanation for the differential effects of naturally occurring furanocoumarins (and 7,8-BF) on polycyclic aromatic hydrocarbon skin carcinogenesis.

          Related collections

          Author and article information

          Comments

          Comment on this article