19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Mass extinctions in the marine fossil record.

          A new compilation of fossil data on invertebrate and vertebrate families indicates that four mass extinctions in the marine realm are statistically distinct from background extinction levels. These four occurred late in the Ordovician, Permian, Triassic, and Cretaceous periods. A fifth extinction event in the Devonian stands out from the background but is not statistically significant in these data. Background extinction rates appear to have declined since Cambrian time, which is consistent with the prediction that optimization of fitness should increase through evolutionary time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecophysiology. Climate change tightens a metabolic constraint on marine habitats.

            Warming of the oceans and consequent loss of dissolved oxygen (O2) will alter marine ecosystems, but a mechanistic framework to predict the impact of multiple stressors on viable habitat is lacking. Here, we integrate physiological, climatic, and biogeographic data to calibrate and then map a key metabolic index-the ratio of O2 supply to resting metabolic O2 demand-across geographic ranges of several marine ectotherms. These species differ in thermal and hypoxic tolerances, but their contemporary distributions are all bounded at the equatorward edge by a minimum metabolic index of ~2 to 5, indicative of a critical energetic requirement for organismal activity. The combined effects of warming and O2 loss this century are projected to reduce the upper ocean's metabolic index by ~20% globally and by ~50% in northern high-latitude regions, forcing poleward and vertical contraction of metabolically viable habitats and species ranges.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global cooling during the eocene-oligocene climate transition.

              About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were approximately 20 degrees C and cooled an average of approximately 5 degrees C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.
                Bookmark

                Author and article information

                Journal
                Nature Geoscience
                Nat. Geosci.
                Springer Science and Business Media LLC
                1752-0894
                1752-0908
                December 16 2019
                Article
                10.1038/s41561-019-0504-6
                ad3b5c58-c366-4b80-828a-7fb6a142b78b
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article