65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesicle oocytes (GVOs), but the overall distribution of non-CG methylation and the enzymes responsible for this modification are unknown. Using amplification-free whole-genome bisulfite sequencing, which can be used with minute amounts of DNA, we constructed the base-resolution methylome maps of GVOs, non-growing oocytes (NGOs), and mutant GVOs lacking the DNA methyltransferase Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3L. We found that nearly two-thirds of all methylcytosines occur in a non-CG context in GVOs. The distribution of non-CG methylation closely resembled that of CG methylation throughout the genome and showed clear enrichment in gene bodies. Compared to NGOs, GVOs were over four times more methylated at non-CG sites, indicating that non-CG methylation accumulates during oocyte growth. Lack of Dnmt3a or Dnmt3L resulted in a global reduction in both CG and non-CG methylation, showing that non-CG methylation depends on the Dnmt3a-Dnmt3L complex. Dnmt3b was dispensable. Of note, lack of Dnmt1 resulted in a slight decrease in CG methylation, suggesting that this maintenance enzyme plays a role in non-dividing oocytes. Dnmt1 may act on CG sites that remain hemimethylated in the de novo methylation process. Our results provide a basis for understanding the mechanisms and significance of non-CG methylation in mammalian oocytes.

          Author Summary

          Methylation of cytosine bases in DNA is an epigenetic modification crucial for normal development, retrotransposon silencing, and cellular reprogramming. In mammals, the vast majority of 5-methylcytosine occurs at CG dinucleotides, and thus most studies to date have focused on this dinucleotide. However, recent studies have shown that 5-methylcytosine is abundant at non-CG (CA, CT, and CC) sites in certain tissues and certain cell types in human and mouse. We previously identified non-CG methylation in CG-rich sequences, including the imprint control regions in mouse germinal vesicle oocytes, but its global distribution and the enzymes responsible are unknown. Using advanced high-throughput sequencing technology applicable to minute amounts of DNA, we obtained high-resolution methylation maps of newborn non-growing oocytes, adult germinal vesicle oocytes, and mutant germinal vesicle oocytes lacking any of the four DNA methyltransferase family proteins. Our results revealed that non-CG methylation accumulates genome-wide in close proximity to highly methylated CG sites during the oocyte growth stage. We also found that the de novo DNA methyltransferase proteins Dnmt3a and Dnmt3L are responsible for non-CG methylation in oocytes. Unexpectedly, we found that the maintenance methyltransferase Dnmt1 has a role in de novo CG methylation. Our study provides a basis for understanding the mechanisms and significance of non-CG methylation in mammalian oocytes.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Principles and challenges of genomewide DNA methylation analysis.

          Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. Therefore, profiling DNA methylation across the genome is vital to understanding the influence of epigenetics. There has been a revolution in DNA methylation analysis technology over the past decade: analyses that previously were restricted to specific loci can now be performed on a genome-scale and entire methylomes can be characterized at single-base-pair resolution. However, there is such a diversity of DNA methylation profiling techniques that it can be challenging to select one. This Review discusses the different approaches and their relative merits and introduces considerations for data analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting.

            Imprinted genes are epigenetically marked during gametogenesis so that they are exclusively expressed from either the paternal or the maternal allele in offspring. Imprinting prevents parthenogenesis in mammals and is often disrupted in congenital malformation syndromes, tumours and cloned animals. Although de novo DNA methyltransferases of the Dnmt3 family are implicated in maternal imprinting, the lethality of Dnmt3a and Dnmt3b knockout mice has precluded further studies. We here report the disruption of Dnmt3a and Dnmt3b in germ cells, with their preservation in somatic cells, by conditional knockout technology. Offspring from Dnmt3a conditional mutant females die in utero and lack methylation and allele-specific expression at all maternally imprinted loci examined. Dnmt3a conditional mutant males show impaired spermatogenesis and lack methylation at two of three paternally imprinted loci examined in spermatogonia. By contrast, Dnmt3b conditional mutants and their offspring show no apparent phenotype. The phenotype of Dnmt3a conditional mutants is indistinguishable from that of Dnmt3L knockout mice, except for the discrepancy in methylation at one locus. These results indicate that both Dnmt3a and Dnmt3L are required for methylation of most imprinted loci in germ cells, but also suggest the involvement of other factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dnmt3L and the establishment of maternal genomic imprints.

              Complementary sets of genes are epigenetically silenced in male and female gametes in a process termed genomic imprinting. The Dnmt3L gene is expressed during gametogenesis at stages where genomic imprints are established. Targeted disruption of Dnmt3L caused azoospermia in homozygous males, and heterozygous progeny of homozygous females died before midgestation. Bisulfite genomic sequencing of DNA from oocytes and embryos showed that removal of Dnmt3L prevented methylation of sequences that are normally maternally methylated. The defect was specific to imprinted regions, and global genome methylation levels were not affected. Lack of maternal methylation imprints in heterozygous embryos derived from homozygous mutant oocytes caused biallelic expression of genes that are normally expressed only from the allele of paternal origin. The key catalytic motifs characteristic of DNA cytosine methyltransferases have been lost from Dnmt3L, and the protein is more likely to act as a regulator of imprint establishment than as a DNA methyltransferase.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                April 2013
                April 2013
                18 April 2013
                : 9
                : 4
                : e1003439
                Affiliations
                [1 ]Division of Epigenomics, Medical Institute of Bioregulation, and Epigenome Network Research Center, Kyushu University, Fukuoka, Japan
                [2 ]Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
                [3 ]Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
                [4 ]Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
                [5 ]Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
                [6 ]Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
                University of Pennsylvania, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HS. Performed the experiments: KS HK. Analyzed the data: KS HT. Contributed reagents/materials/analysis tools: KS HT HK FM HC TI TK. Wrote the paper: KS HT HS.

                Article
                PGENETICS-D-12-02329
                10.1371/journal.pgen.1003439
                3630097
                23637617
                ad2a8ab9-1523-4cf7-a963-47022b90584a
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 September 2012
                : 23 February 2013
                Page count
                Pages: 10
                Funding
                This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) (grant 20062010 to HS, 222228004 and S0801025 to TK), Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P) to HS, and the Research Program of Innovative Cell Biology by Innovative Technology (Cell Innovation) to TI from MEXT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics

                Genetics
                Genetics

                Comments

                Comment on this article