Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knockdown of TRPV gene Nanchung decreases resistance to the novel pyropene insecticide, afidopyropen, in Bemisia tabaci

      , , , ,
      International Journal of Biological Macromolecules
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1471203e93">Insect TRPV is one subfamily of transient receptor potential (TRP) channels, and it is composed of Inactive (Iav) and Nanchung (Nan), the molecular targets of afidopyropen in several sucking insect pests. In this study, we performed successive selection and synergism tests based on previous work. The resistant afidopyropen strain HD-Afi of Bemisia tabaci reached about 86-fold resistance to afidopyropen, and only part of the resistance resulted from detoxification of cytochrome P450 monooxygenases. Then, we cloned and characterized Nan and Iav from B. tabaci (BtNan and BtIav), and found that they were expressed in all stages of development and tissues of adult, and the expression level of BtNan in strains of HD-S and HD-Afi were significantly increased after afidopyropen treatment. Further, expression of BtNan was downregulated after gene silencing, and it resulted in significantly decreased afidopyropen resistance in the strain of HD-Afi. Our data revealed the first evidence that overexpression of the TRPV Nan gene is responsible for causing afidopyropen resistance in B. tabaci, and our results could provide new visions on the function of TRPVs in the development of resistance to pesticide and supply evidence for developing novel strategies of pest management. </p>

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRP channels.

            The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An introduction to TRP channels.

              The aim of this review is to provide a basic framework for understanding the function of mammalian transient receptor potential (TRP) channels, particularly as they have been elucidated in heterologous expression systems. Mammalian TRP channel proteins form six-transmembrane (6-TM) cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Selected functional properties of TRP channels from each subfamily are summarized in this review. Although a single defining characteristic of TRP channel function has not yet emerged, TRP channels may be generally described as calcium-permeable cation channels with polymodal activation properties. By integrating multiple concomitant stimuli and coupling their activity to downstream cellular signal amplification via calcium permeation and membrane depolarization, TRP channels appear well adapted to function in cellular sensation. Our review of recent literature implicating TRP channels in neuronal growth cone steering suggests that TRPs may function more widely in cellular guidance and chemotaxis. The TRP channel gene family and its nomenclature, the encoded proteins and alternatively spliced variants, and the rapidly expanding pharmacology of TRP channels are summarized in online supplemental material.
                Bookmark

                Author and article information

                Journal
                International Journal of Biological Macromolecules
                International Journal of Biological Macromolecules
                Elsevier BV
                01418130
                January 2023
                January 2023
                : 224
                : 1566-1575
                Article
                10.1016/j.ijbiomac.2022.10.242
                36330856
                ad20680b-e92a-48be-8c6b-5081dd8db755
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content5,495

                Cited by3

                Most referenced authors644