Inflammatory biomarkers are associated with negative health outcomes. In this study, we investigated the associations between airborne occupational exposures and levels and changes in inflammatory biomarkers.
We included 79 604 adults at baseline from the Lifelines cohort of which 48 403 (60.8%) subjects were followed for a median of 4.5 years. Airborne occupational exposures at the current or last-held job at baseline were estimated with the occupational asthma-specific job-exposure matrix. Both in cross-sectional and longitudinal analyses, we used linear regression models (adjusted for age, sex, education, monthly income, body mass index, smoking, pack-years, asthma and anti-inflammatory medication) to investigate the associations between airborne occupational exposures (allergens, reactive chemicals, pesticides and micro-organisms) and inflammatory biomarkers (C reactive protein (CRP), eosinophils and neutrophils).
In the cross-sectional analyses, exposure to allergens, reactive chemicals and micro-organisms was associated with a lower (Log) CRP level (B(95% CI)=−0.05 (−0.08 to −0.02),–0.05(−0.08 to −0.02) and −0.09(−0.16 to −0.02), respectively). Likewise, exposure to allergens, reactive chemicals, pesticides and micro-organisms was associated with a lower (log) neutrophils count (−0.01 (−0.02 to −0.01), −0.01 (−0.02 to −0.01),–0.02 (−0.04 to −0.01) and −0.02(−0.03 to −0.01), respectively). No association between airborne occupational exposures and eosinophils count was found. In the longitudinal analyses, no association between airborne occupational exposures and changes in inflammatory biomarkers was found.
At baseline, airborne occupational exposures are inversely associated with inflammation; no effect of occupational exposures on inflammation was found at follow-up. In the future studies, details of occupational exposures, such as duration of exposures and cumulative exposures, need to be included to investigate the airborne occupational exposures and inflammatory biomarkers.