23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Granzyme A Is Required for Regulatory T-Cell Mediated Prevention of Gastrointestinal Graft-versus-Host Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In our previous work we could identify defects in human regulatory T cells (Tregs) likely favoring the development of graft-versus-host disease (GvHD) following allogeneic stem cell transplantation (SCT). Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA) also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4 +CD25 + Tregs from gzmA -/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA -/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA -/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance.

          Granzyme B is important for the ability of NK cells and CD8(+) T cells to kill their targets. However, we showed here that granzyme B-deficient mice clear both allogeneic and syngeneic tumor cell lines more efficiently than do wild-type (WT) mice. To determine whether regulatory T (Treg) cells utilize granzyme B to suppress immune responses against these tumors, we examined the expression and function of granzyme B in Treg cells. Granzyme B was not expressed in naive Treg cells but was highly expressed in 5%-30% of CD4(+)Foxp3(+) Treg cells in the tumor environment. Adoptive transfer of WT Treg cells, but not granzyme B- or perforin-deficient Treg cells, into granzyme B-deficient mice partially restored susceptibility to tumor growth; Treg cells derived from the tumor environment could induce NK and CD8(+) T cell death in a granzyme B- and perforin-dependent fashion. Granzyme B and perforin are therefore relevant for Treg cell-mediated suppression of tumor clearance in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human T regulatory cells can use the perforin pathway to cause autologous target cell death.

            Cytotoxic T lymphocytes and natural killer cells use the perforin/granzyme pathway to kill virally infected cells and tumor cells. Mutations in genes important for this pathway are associated with several human diseases. CD4(+) T regulatory (Treg) cells have emerged as important in the control of immunopathological processes. We have previously shown that human adaptive Treg cells preferentially express granzyme B and can kill allogeneic target cells in a perforin-dependent manner. Here, we demonstrate that activated human CD4(+)CD25(+) natural Treg cells express granzyme A but very little granzyme B. Furthermore, both Treg subtypes display perforin-dependent cytotoxicity against autologous target cells, including activated CD4(+) and CD8(+) T cells, CD14(+) monocytes, and both immature and mature dendritic cells. This cytotoxicity is dependent on CD18 adhesive interactions but is independent of Fas/FasL. Our findings suggest that the perforin/granzyme pathway is one of the mechanisms that Treg cells can use to control immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Donor-type CD4+CD25+ Regulatory T Cells Suppress Lethal Acute Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation

              Acute graft-versus-host disease (aGVHD) is still a major obstacle in clinical allogeneic bone marrow (BM) transplantation. CD4+CD25+ regulatory T (Treg) cells have recently been shown to suppress proliferative responses of CD4+CD25− T cells to alloantigenic stimulation in vitro and are required for ex vivo tolerization of donor T cells, which results in their reduced potential to induce aGVHD. Here we show that CD4+CD25+ T cells isolated from the spleen or BM of donor C57BL/6 (H-2b) mice that have not been tolerized are still potent inhibitors of the alloresponse in vitro and of lethal aGVHD induced by C57BL/6 CD4+CD25− T cells in irradiated BALB/c (H-2d) hosts in vivo. The addition of the CD4+CD25+ Treg cells at a 1:1 ratio with responder/inducer CD4+CD25− T cells resulted in a >90% inhibition of the mixed leukocyte reaction and marked protection from lethal GVHD. This protective effect depended in part on the ability of the transferred CD4+CD25+ T cells to secrete interleukin 10 and occurred if the Treg cells were of donor, but not host, origin. Our results demonstrate that the balance of donor-type CD4+CD25+ Treg and conventional CD4+CD25− T cells can determine the outcome of aGVHD.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                30 April 2015
                2015
                : 10
                : 4
                : e0124927
                Affiliations
                [1 ]Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
                [2 ]Immune Effector Cells Group (ICE), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
                [3 ]Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
                The Jackson Laboratory for Genomic Medicine, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SNU AF. Performed the experiments: SV CA OK UD. Analyzed the data: SV CA SNU OK. Contributed reagents/materials/analysis tools: JP. Wrote the paper: SNU AF.

                Article
                PONE-D-14-55852
                10.1371/journal.pone.0124927
                4415808
                25928296
                ace1db30-de1f-47bc-9f8d-efc5898982bd
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 5 January 2015
                : 11 March 2015
                Page count
                Figures: 4, Tables: 0, Pages: 9
                Funding
                This work was supported by the German José Carreras leukemia foundation (grant DJCLS F12/05). JP was supported by ARAID foundation, grant SAF2011-25390 from Ministerio de Economia y Competitividad and Fondo Social Europeo. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article