17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is the Application of Plant Probiotic Bacterial Consortia Always Beneficial for Plants? Exploring Synergies between Rhizobial and Non-Rhizobial Bacteria and Their Effects on Agro-Economically Valuable Crops

      review-article
      * ,
      Life
      MDPI
      sustainable agriculture, plant growth promotion, endophytes, consortium, plant probiotics, field trials

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The overgrowth of human population and the demand for high-quality foods necessitate the search for sustainable alternatives to increase crop production. The use of biofertilizers, mostly based on plant probiotic bacteria (PPB), represents a reliable and eco-friendly solution. This heterogeneous group of bacteria possesses many features with positive effects on plants; however, how these bacteria with each other and with the environment when released into a field has still barely been studied. In this review, we focused on the diversity of root endophytic rhizobial and non-rhizobial bacteria existing within plant root tissues, and also on their potential applications as consortia exerting benefits for plants and the environment. We demonstrated the benefits of using bacterial inoculant consortia instead of single-strain inoculants. We then critically discussed several considerations that farmers, companies, governments, and the scientific community should take into account when a biofertilizer based on those PPBs is proposed, including (i) a proper taxonomic identification, (ii) the characterization of the beneficial features of PPB strains, and (iii) the ecological impacts on plants, environment, and plant/soil microbiomes. Overall, the success of a PPB consortium depends on many factors that must be considered and analyzed before its application as a biofertilizer in an agricultural system.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, variation, and assembly of the root-associated microbiomes of rice.

          Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application

            Graphical abstract
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Research priorities for harnessing plant microbiomes in sustainable agriculture

              Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes—i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance—into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host–microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.
                Bookmark

                Author and article information

                Journal
                Life (Basel)
                Life (Basel)
                life
                Life
                MDPI
                2075-1729
                12 March 2020
                March 2020
                : 10
                : 3
                : 24
                Affiliations
                MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; apaco@ 123456uevora.pt
                Author notes
                [* ]Correspondence: esthermenendez@ 123456uevora.pt ; Tel.: +351-266-760-878
                Author information
                https://orcid.org/0000-0003-2320-0067
                https://orcid.org/0000-0003-0362-1630
                Article
                life-10-00024
                10.3390/life10030024
                7151578
                32178383
                acdbe547-5373-4072-a78f-8fd6aefe374a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 January 2020
                : 09 March 2020
                Categories
                Review

                sustainable agriculture,plant growth promotion,endophytes,consortium,plant probiotics,field trials

                Comments

                Comment on this article