1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Core Endophytic Bacteria and Their Roles in the Coralloid Roots of Cultivated Cycas revoluta (Cycadaceae)

      , , , ,
      Microorganisms
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a gymnosperm group, cycads are known for their ancient origin and specialized coralloid root, which can be used as an ideal system to explore the interaction between host and associated microorganisms. Previous studies have revealed that some nitrogen-fixing cyanobacteria contribute greatly to the composition of the endophytic microorganisms in cycad coralloid roots. However, the roles of host and environment in shaping the composition of endophytic bacteria during the recruitment process remain unclear. Here, we determined the diversity, composition, and function prediction of endophytic bacteria from the coralloid roots of a widely cultivated cycad, Cycas revoluta Thunb. Using next-generation sequencing techniques, we comprehensively investigated the diversity and community structure of the bacteria in coralloid roots and bulk soils sampled from 11 sites in China, aiming to explore the variations in core endophytic bacteria and to predict their potential functions. We found a higher microbe diversity in bulk soils than in coralloid roots. Meanwhile, there was no significant difference in the diversity and composition of endophytic bacteria across different localities, and the same result was found after removing cyanobacteria. Desmonostoc was the most dominant in coralloid roots, followed by Nostoc, yet these two cyanobacteria were not shared by all samples. Rhodococcus, Edaphobacter, Niastella, Nordella, SH-PL14, and Virgisporangium were defined as the core microorganisms in coralloid roots. A function prediction analysis revealed that endophytic bacteria majorly participated in the plant uptake of phosphorus and metal ions and in disease resistance. These results indicate that the community composition of the bacteria in coralloid roots is affected by both the host and environment, in which the host is more decisive. Despite the very small proportion of core microbes, their interactions are significant and likely contribute to functions related to host survival. Our study contributes to an understanding of microbial diversity and composition in cycads, and it expands the knowledge on the association between hosts and symbiotic microbes.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Welcome to the Tidyverse

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

              mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
                Bookmark

                Author and article information

                Journal
                MICRKN
                Microorganisms
                Microorganisms
                MDPI AG
                2076-2607
                September 2023
                September 21 2023
                : 11
                : 9
                : 2364
                Article
                10.3390/microorganisms11092364
                10537169
                37764208
                aca5e03f-10aa-40e8-bfea-c4275658ac39
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article