19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soluble Phenolic Composition Tailored by Germination Conditions Accompany Antioxidant and Anti-Inflammatory Properties of Wheat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knowledge on the specific variation in the phenolic composition of wheat defined by germination conditions and its relationship with antioxidant and anti-inflammatory properties of sprouts would be useful to improve the functional value of wheat-derived products. Variation in soluble phenolic composition, antioxidant and anti-inflammatory potential of wheat was examined in a range of germination temperature (12–21 °C) and time (1–7 d). Response surface methodology was applied for building lineal and quadratic models to find optimal germination conditions to improve nutraceutical value of wheat sprouts using the desirability ( D) function. Phenolics were determined by HPLC-DAD-ESI-MS. In vitro biochemical methods and lipopolysaccharide stimulated RAW264.7 macrophages were used to determine antiradical and anti-inflammatory activities of wheat sprouts. Accumulation of soluble phenolic acids, flavone C-glycosides and lignans in sprouts was positively influenced by germination temperature and time. Increased concentration of individual polyphenols was directly associated with improved ability of sprouts for radical scavenging and reduction of tumor necrosis factor α and interleukin 6 in macrophages. Optimal desirability ( D = 0.89) for improved nutraceutical value of wheat sprouts was achieved at 21 °C for 7 d. This information would be useful for food industry aiming at producing wheat-based products with better nutritional and healthy properties.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Dietary factors and low-grade inflammation in relation to overweight and obesity.

          Low-grade inflammation is a characteristic of the obese state, and adipose tissue releases many inflammatory mediators. The source of these mediators within adipose tissue is not clear, but infiltrating macrophages seem to be especially important, although adipocytes themselves play a role. Obese people have higher circulating concentrations of many inflammatory markers than lean people do, and these are believed to play a role in causing insulin resistance and other metabolic disturbances. Blood concentrations of inflammatory markers are lowered following weight loss. In the hours following the consumption of a meal, there is an elevation in the concentrations of inflammatory mediators in the bloodstream, which is exaggerated in obese subjects and in type 2 diabetics. Both high-glucose and high-fat meals may induce postprandial inflammation, and this is exaggerated by a high meal content of advanced glycation end products (AGE) and partly ablated by inclusion of certain antioxidants or antioxidant-containing foods within the meal. Healthy eating patterns are associated with lower circulating concentrations of inflammatory markers. Among the components of a healthy diet, whole grains, vegetables and fruits, and fish are all associated with lower inflammation. AGE are associated with enhanced oxidative stress and inflammation. SFA and trans-MUFA are pro-inflammatory, while PUFA, especially long-chain n-3 PUFA, are anti-inflammatory. Hyperglycaemia induces both postprandial and chronic low-grade inflammation. Vitamin C, vitamin E and carotenoids decrease the circulating concentrations of inflammatory markers. Potential mechanisms are described and research gaps, which limit our understanding of the interaction between diet and postprandial and chronic low-grade inflammation, are identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An overview of the immune system.

            We are continually exposed to organisms that are inhaled, swallowed, or inhabit our skin and mucous membranes. Whether these organisms penetrate and cause disease is a result of both the pathogenicity of the organism (the virulence factors at its disposal) and the integrity of host defence mechanisms. The immune system is an interactive network of lymphoid organs, cells, humoral factors, and cytokines. The essential function of the immune system in host defence is best illustrated when it goes wrong; underactivity resulting in the severe infections and tumours of immunodeficiency, overactivity in allergic and autoimmune disease. In this review we have covered the normal function of the immune system in recognising, repelling, and eradicating pathogens and other foreign molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of diet on inflammation: emphasis on the metabolic syndrome.

              Reducing the incidence of coronary heart disease with diet is possible. The main dietary strategies include adequate omega-3 fatty acids intake, reduction of saturated and trans-fats, and consumption of a diet high in fruits, vegetables, nuts, and whole grains and low in refined grains. Each of these strategies may be associated with lower generation of inflammation. This review examines the epidemiologic and clinical evidence concerning diet and inflammation. Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by an excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The whole diet approach seems particularly promising to reduce the inflammation associated with the metabolic syndrome. The choice of healthy sources of carbohydrate, fat, and protein, associated with regular physical activity and avoidance of smoking, is critical to fighting the war against chronic disease. Western dietary patterns warm up inflammation, while prudent dietary patterns cool it down.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                14 May 2020
                May 2020
                : 9
                : 5
                : 426
                Affiliations
                [1 ]Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; i.tome@ 123456ictan.csic.es (I.T.-S.); elenape@ 123456ictan.csic.es (E.P.); sara.bautista@ 123456ictan.csic.es (S.B.-E.); frias@ 123456ictan.csic.es (J.F.)
                [2 ]Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon. Ctra. de Burgos Km.119, Finca Zamadueñas, 47071 Valladolid, Spain; mardiaan@ 123456itacyl.es (A.B.M.-D.); ricbarda@ 123456itacyl.es (D.R.); Lorena.gonzalez@ 123456itacyl.es (L.G.-M.)
                Author notes
                [* ]Correspondence: c.m.villaluenga@ 123456csic.es ; Tel.: +34-91-258-7601
                Author information
                https://orcid.org/0000-0001-5014-9848
                https://orcid.org/0000-0002-0755-3033
                https://orcid.org/0000-0002-1155-6464
                Article
                antioxidants-09-00426
                10.3390/antiox9050426
                7278661
                32423164
                ac9f6fa8-e6ce-4a54-9288-3d6f999e03d9
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 April 2020
                : 12 May 2020
                Categories
                Article

                antioxidant activity,germination,immunomodulation,nutraceutical value,optimization,phenolic compounds,wheat

                Comments

                Comment on this article