21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global histone acetylation and deacetylation in yeast.

      Nature
      Acetylation, Chromosomes, Fungal, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Fungal, Histone Deacetylases, genetics, metabolism, Histones, Membrane Transport Proteins, Phosphate Transport Proteins, Polymerase Chain Reaction, Precipitin Tests, Saccharomyces cerevisiae, enzymology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone acetyltransferases and deacetylases can be targeted to promoters to activate or repress genes. For example, the histone acetyltransferase GCN5 is part of a yeast multiprotein complex that is recruited by the DNA-binding activator protein GCN4 (refs 1-3). The histone deacetylase RPD3 complex is recruited to DNA by the repressor UME6 (refs 4, 5); similar mechanisms exist in other eukaryotes. However, deletion of RPD3 also increases expression of the PHO5 gene that is repressed by nucleosomes, and regulated by GCN5 (ref. 10) but not by UME6. We have determined whether acetylation and deacetylation are promoter specific at PHO5, by using antibodies against acetylated lysine residues and chromatin immunoprecipitation to examine the acetylation state of a 4.25-kilobase region surrounding the PHO5 gene. Here we show that this region is acetylated extensively by ESA1 and GCN5 and deacetylated by HDA1 and RPD3, and that widespread histone modification affects three separate chromosomal regions examined, which total 22kb. Our data indicate that targeted modification occurs in a background of global acetylation and deacetylation that not only reduces basal transcription, but also allows a rapid return to the initial state of acetylation when targeting is removed.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Functional Discovery via a Compendium of Expression Profiles

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription.

              Increased histone acetylation has been correlated with increased transcription, and regions of heterochromatin are generally hypoacetylated. In investigating the cause-and-effect relationship between histone acetylation and gene activity, we have characterized two yeast histone deacetylase complexes. Histone deacetylase-A (HDA) is an approximately 350-kDa complex that is highly sensitive to the deacetylase inhibitor trichostatin A. Histone deacetylase-B (HDB) is an approximately 600-kDa complex that is much less sensitive to trichostatin A. The HDA1 protein (a subunit of the HDA activity) shares sequence similarity to RPD3, a factor required for optimal transcription of certain yeast genes. RPD3 is associated with the HDB activity. HDA1 also shares similarity to three new open reading frames in yeast, designated HOS1, HOS2, and HOS3. We find that both hda1 and rpd3 deletions increase acetylation levels in vivo at all sites examined in both core histones H3 and H4, with rpd3 deletions having a greater impact on histone H4 lysine positions 5 and 12. Surprisingly, both hda1 and rpd3 deletions increase repression at telomeric loci, which resemble heterochromatin with rpd3 having a greater effect. In addition, rpd3 deletions retard full induction of the PHO5 promoter fused to the reporter lacZ. These data demonstrate that histone acetylation state has a role in regulating both heterochromatic silencing and regulated gene expression.
                Bookmark

                Author and article information

                Comments

                Comment on this article