0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PFAS Contamination in Europe: Generating Knowledge and Mapping Known and Likely Contamination with “Expert-Reviewed” Journalism

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants

          Drinking water contamination with poly- and perfluoroalkyl substances (PFASs) poses risks to the developmental, immune, metabolic, and endocrine health of consumers. We present a spatial analysis of 2013–2015 national drinking water PFAS concentrations from the U.S. Environmental Protection Agency’s (US EPA) third Unregulated Contaminant Monitoring Rule (UCMR3) program. The number of industrial sites that manufacture or use these compounds, the number of military fire training areas, and the number of wastewater treatment plants are all significant predictors of PFAS detection frequencies and concentrations in public water supplies. Among samples with detectable PFAS levels, each additional military site within a watershed’s eight-digit hydrologic unit is associated with a 20% increase in PFHxS, a 10% increase in both PFHpA and PFOA, and a 35% increase in PFOS. The number of civilian airports with personnel trained in the use of aqueous film-forming foams is significantly associated with the detection of PFASs above the minimal reporting level. We find drinking water supplies for 6 million U.S. residents exceed US EPA’s lifetime health advisory (70 ng/L) for PFOS and PFOA. Lower analytical reporting limits and additional sampling of smaller utilities serving <10000 individuals and private wells would greatly assist in further identifying PFAS contamination sources.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            An overview of the uses of per- and polyfluoroalkyl substances (PFAS)

            Systematic description of more than 200 uses of PFAS and the individual substances associated with each of them (over 1400 PFAS in total). Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources.

              We quantify global emissions of C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues during the life-cycle of products based on perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctane sulfonyl fluoride (POSF), and fluorotelomer compounds. We estimate emissions of 2610-21400 tonnes of C4-C14 PFCAs in the period from 1951 to 2015, and project 20-6420 tonnes to be emitted from 2016 to 2030. The global annual emissions steadily increased in the period 1951-2002, followed by a decrease and then another increase in the period 2002-2012. Releases from fluoropolymer production contributed most to historical PFCA emissions (e.g. 55-83% in 1951-2002). Since 2002, there has been a geographical shift of industrial sources (particularly fluoropolymer production sites) from North America, Europe and Japan to emerging Asian economies, especially China. Sources differ between PFCA homologues, sometimes considerably, and the relative contributions of each source change over time. For example, whereas 98-100% of historical (1951-2002) PFOA emissions are attributed to direct releases during the life-cycle of products containing PFOA as ingredients or impurities, a much higher historical contribution from PFCA precursor degradation is estimated for some other homologues (e.g. 9-78% for PFDA). We address the uncertainties of the PFCA emissions by defining a lower and a higher emission scenario, which differ by approximately a factor of eight.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Environmental Science & Technology
                Environ. Sci. Technol.
                American Chemical Society (ACS)
                0013-936X
                1520-5851
                April 03 2024
                Affiliations
                [1 ]Department of Sociology, Whitman College, Walla Walla, Washington 99362, United States
                [2 ]Department of Sociology and Anthropology and Department of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
                [3 ]Department of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
                [4 ]Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
                [5 ]Freelance Datajournalist, Berlin 10961, Germany
                [6 ]Le Monde, Paris 75013, France
                [7 ]Watershed, London N1 7GU, England
                [8 ]Norddeutscher Rundfunk, Ressort Investigation, Berlin 10117, Germany
                [9 ]Süddeutsche Zeitung, Munich 81677, Germany
                [10 ]NDR/WDR/Süddeutsche Zeitung, Berlin 13086, Germany
                [11 ]RADAR Magazine, Udine 33100, Italy
                [12 ]DATADISTA, Madrid 28013, Spain
                [13 ]Massachusetts Department of Environmental Protection, Woburn, Massachusetts 01801, United States
                [14 ]Freelance Journalist, Weißenfelder Straße 7, Parsdorf, Munich 85599, Germany
                Article
                10.1021/acs.est.3c09746
                ac900c79-162c-4056-987e-89ecc4ab6da9
                © 2024

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article