6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Linearized Fit Model for Robust Shape Parameterization of FET-PET TACs.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The kinetic analysis of [Formula: see text]-FET time-activity curves (TAC) can provide valuable diagnostic information in glioma patients. The analysis is most often limited to the average TAC over a large tissue volume and is normally assessed by visual inspection or by evaluating the time-to-peak and linear slope during the late uptake phase. Here, we derived and validated a linearized model for TACs of [Formula: see text]-FET in dynamic PET scans. Emphasis was put on the robustness of the numerical parameters and how reliably automatic voxel-wise analysis of TAC kinetics was possible. The diagnostic performance of the extracted shape parameters for the discrimination between isocitrate dehydrogenase (IDH) wildtype (wt) and IDH-mutant (mut) glioma was assessed by receiver-operating characteristic in a group of 33 adult glioma patients. A high agreement between the adjusted model and measured TACs could be obtained and relative, estimated parameter uncertainties were small. The best differentiation between IDH-wt and IDH-mut gliomas was achieved with the linearized model fitted to the averaged TAC values from dynamic FET PET data in the time interval 4-50 min p.i.. When limiting the acquisition time to 20-40 min p.i., classification accuracy was only slightly lower (-3%) and was comparable to classification based on linear fits in this time interval. Voxel-wise fitting was possible within a computation time ≈ 1 min per image slice. Parameter uncertainties smaller than 80% for all fits with the linearized model were achieved. The agreement of best-fit parameters when comparing voxel-wise fits and fits of averaged TACs was very high (p < 0.001).

          Related collections

          Author and article information

          Journal
          IEEE Trans Med Imaging
          IEEE transactions on medical imaging
          Institute of Electrical and Electronics Engineers (IEEE)
          1558-254X
          0278-0062
          Jul 2021
          : 40
          : 7
          Article
          10.1109/TMI.2021.3067169
          33735076
          ac4845dd-f6d1-4bda-bc23-42e79ca0edc7
          History

          Comments

          Comment on this article