12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exploratory study for identifying systemic biomarkers that correlate with pain response in patients with intervertebral disc disorders

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular events that drive disc damage and low back pain (LBP) may precede clinical manifestation of disease onset and can cause detrimental long-term effects such as disability. Biomarkers serve as objective molecular indicators of pathological processes. The goal of this study is to identify systemic biochemical factors as predictors of response to treatment of LBP with epidural steroid injection (ESI). Since inflammation plays a pivotal role in LBP, this pilot study investigates the effect of ESI on systemic levels of 48 inflammatory biochemical factors (cytokines, chemokines, and growth factors) and examines the relationship between biochemical factor levels and pain or disability in patients with disc herniation (DH), or other diagnoses (Other Dx) leading to low back pain, which included spinal stenosis (SS) and degenerative disc disease (DDD). Study participants ( n = 16) were recruited from a back pain management practice. Pain numerical rating score (NRS), Oswestry Disability Index (ODI), and blood samples were collected pre- and at 7 to 10 days post-treatment. Blood samples were assayed for inflammatory mediators using commercial multiplex assays. Mediator levels were compared pre- and post-treatment to investigate the potential correlations between clinical and biochemical outcomes. Our results indicate that a single ESI significantly decreased systemic levels of SCGF-β and IL-2. Improvement in pain in all subjects was correlated with changes in chemokines (MCP-1, MIG), hematopoietic progenitor factors (SCGF-β), and factors that participate in angiogenesis/fibrosis (HGF), nociception (SCF, IFN-α2), and inflammation (IL-6, IL-10, IL-18, TRAIL). Levels of biochemical mediators varied based on diagnosis of LBP, and changes in pain responses and systemic mediators from pre- to post-treatment were dependent on the diagnosis cohort. In the DH cohort, levels of IL-17 and VEGF significantly decreased post-treatment. In the Other Dx cohort, levels of IL-2Rα, IL-3, and SCGF-β significantly decreased post-treatment. In order to determine whether mediator changes were related to pain, correlations between change in pain scores and change in mediator levels were performed. Subjects with DH demonstrated a profile signature that implicated hematopoiesis factors (SCGF-β, GM-CSF) in pain response, while subjects with Other Dx demonstrated a biomarker profile that implicated chemokines (MCP-1, MIG) and angiogenic factors (HGF, VEGF) in pain response. Our findings provide evidence that systemic biochemical factors in patients with LBP vary by diagnosis, and pain response to treatment is associated with a unique profile of biochemical responses in each diagnosis group. Future hypothesis-based studies with larger subject cohorts are warranted to confirm the findings of this pilot exploratory study.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Role of cytokines in intervertebral disc degeneration: pain and disc content.

          Degeneration of the intervertebral discs (IVDs) is a major contributor to back, neck and radicular pain. IVD degeneration is characterized by increases in levels of the proinflammatory cytokines TNF, IL-1α, IL-1β, IL-6 and IL-17 secreted by the IVD cells; these cytokines promote extracellular matrix degradation, chemokine production and changes in IVD cell phenotype. The resulting imbalance in catabolic and anabolic responses leads to the degeneration of IVD tissues, as well as disc herniation and radicular pain. The release of chemokines from degenerating discs promotes the infiltration and activation of immune cells, further amplifying the inflammatory cascade. Leukocyte migration into the IVD is accompanied by the appearance of microvasculature tissue and nerve fibres. Furthermore, neurogenic factors, generated by both disc and immune cells, induce expression of pain-associated cation channels in the dorsal root ganglion. Depolarization of these ion channels is likely to promote discogenic and radicular pain, and reinforce the cytokine-mediated degenerative cascade. Taken together, an enhanced understanding of the contribution of cytokines and immune cells to these catabolic, angiogenic and nociceptive processes could provide new targets for the treatment of symptomatic disc disease. In this Review, the role of key inflammatory cytokines during each of the individual phases of degenerative disc disease, as well as the outcomes of major clinical studies aimed at blocking cytokine function, are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colony-stimulating factors in inflammation and autoimmunity.

            Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues.

              Prior reports document macrophage and lymphocyte infiltration with proinflammatory cytokine expression in pathologic intervertebral disc (IVD) tissues. Nevertheless, the role of the Th17 lymphocyte lineage in mediating disc disease remains uninvestigated. We undertook this study to evaluate the immunophenotype of pathologic IVD specimens, including interleukin-17 (IL-17) expression, from surgically obtained IVD tissue and from nondegenerated autopsy control tissue. Surgical IVD tissues were procured from patients with degenerative disc disease (n = 25) or herniated IVDs (n = 12); nondegenerated autopsy control tissue was also obtained (n = 8) from the anulus fibrosus and nucleus pulposus regions. Immunohistochemistry was performed for cell surface antigens (CD68 for macrophages, CD4 for lymphocytes) and various cytokines, with differences in cellularity and target immunoreactivity scores analyzed between surgical tissue groups and between autopsy control tissue regions. Immunoreactivity for IL-4, IL-6, IL-12, and interferon-gamma (IFNgamma) was modest in surgical IVD tissue, although expression was higher in herniated IVD samples and virtually nonexistent in control samples. The Th17 lymphocyte product IL-17 was present in >70% of surgical tissue fields, and among control samples was detected rarely in anulus fibrosus regions and modestly in nucleus pulposus regions. Macrophages were prevalent in surgical tissues, particularly herniated IVD samples, and lymphocytes were expectedly scarce. Control tissue revealed lesser infiltration by macrophages and a near absence of lymphocytes. Greater IFNgamma positivity, macrophage presence, and cellularity in herniated IVDs suggests a pattern of Th1 lymphocyte activation in this pathology. Remarkable pathologic IVD tissue expression of IL-17 is a novel finding that contrasts markedly with low levels of IL-17 in autopsy control tissue. These findings suggest involvement of Th17 lymphocytes in the pathomechanism of disc degeneration.
                Bookmark

                Author and article information

                Contributors
                516-562-2574 , nchahine@nshs.edu
                Journal
                Immunol Res
                Immunol. Res
                Immunologic Research
                Springer US (New York )
                0257-277X
                1559-0755
                6 October 2015
                6 October 2015
                2015
                : 63
                : 170-180
                Affiliations
                [ ]The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
                [ ]Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine, Hempstead, NY USA
                [ ]Department of Physical Medicine and Rehabilitation, Hofstra North Shore LIJ School of Medicine, Hempstead, NY USA
                [ ]Department of Molecular Medicine, Hofstra North Shore LIJ School of Medicine, Hempstead, NY USA
                Article
                8709
                10.1007/s12026-015-8709-2
                4689741
                26440592
                ac0f2b79-79fd-4cfe-9f2b-56353d9bc096
                © Springer Science+Business Media New York 2015
                History
                Categories
                Immunoregulation/Inflammation
                Custom metadata
                © Springer Science+Business Media New York 2015

                back pain,inflammation,intervertebral disc,epidural steroid injection

                Comments

                Comment on this article