16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alterations in the exonuclease domain of DNA polymerase ε (Polε) cause ultramutated tumors. Severe mutator effects of the most common variant, Polε-P286R, modeled in yeast suggested that its pathogenicity involves yet unknown mechanisms beyond simple proofreading deficiency. We show that, despite producing a catastrophic amount of replication errors in vivo, the yeast Polε-P286R analog retains partial exonuclease activity and is more accurate than exonuclease-dead Polε. The major consequence of the arginine substitution is a dramatically increased DNA polymerase activity. This is manifested as a superior ability to copy synthetic and natural templates, extend mismatched primer termini, and bypass secondary DNA structures. We discuss a model wherein the cancer-associated substitution limits access of the 3’-terminus to the exonuclease site and promotes binding at the polymerase site, thus stimulating polymerization. We propose that the ultramutator effect results from increased polymerase activity amplifying the contribution of Polε errors to the genomic mutation rate.

          Abstract

          Somatic alterations in the exonuclease domain of DNA polymerase ɛ have been linked to the development of highly mutated cancers. Here, the authors report that a major consequence of the most common cancer-associated Polɛ variant is a dramatically increased DNA polymerase activity.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae.

          Disruption-deletion cassettes are powerful tools used to study gene function in many organisms, including Saccharomyces cerevisiae. Perhaps the most widely useful of these are the heterologous dominant drug resistance cassettes, which use antibiotic resistance genes from bacteria and fungi as selectable markers. We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat). The new cassettes, pAG25 (natMX4), pAG29 (patMX4), pAG31 (patMX3), pAG32 (hphMX4), pAG34 (hphMX3) and pAG35 (natMX3), are cloned into pFA6, and so are in all other respects identical to pFA6-kanMX3 and pFA6-kanMX4. Most tools and techniques used with the kanMX plasmids can also be used with the hph, nat and patMX containing plasmids. These new heterologous dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus. These attributes make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain. Copyright 1999 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas

            Many individuals with multiple or large colorectal adenomas, or early-onset colorectal cancer (CRC), have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple adenoma and/or CRC cases, but in no controls. The susceptibility variants appear to have high penetrance. POLD1 is also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proof-reading (exonuclease) domain of DNA polymerases ε and δ, and are predicted to impair correction of mispaired bases inserted during DNA replication. In agreement with this prediction, mutation carriers’ tumours were microsatellite-stable, but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently-described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE exonuclease domain mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A constant rate of spontaneous mutation in DNA-based microbes.

              J DRAKE (1991)
              In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by approximately 6500-fold. Their average mutation rates per base pair vary by approximately 16,000-fold, whereas their mutation rates per genome vary by only approximately 2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.
                Bookmark

                Author and article information

                Contributors
                pshcherb@unmc.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                22 January 2019
                22 January 2019
                2019
                : 10
                : 374
                Affiliations
                [1 ]ISNI 0000 0001 0666 4105, GRID grid.266813.8, Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, , University of Nebraska Medical Center, ; Omaha, NE 68198 USA
                [2 ]ISNI 0000 0001 1034 3451, GRID grid.12650.30, Department of Medical Biochemistry and Biophysics, , Umeå University, ; 901 87 Umeå, Sweden
                [3 ]ISNI 0000 0001 1034 3451, GRID grid.12650.30, Laboratory for Molecular Infection Medicine Sweden, , Umeå University, ; 901 87 Umeå, Sweden
                [4 ]ISNI 0000 0001 2285 7943, GRID grid.261331.4, Present Address: Comprehensive Cancer Center, , Ohio State University, ; Columbus, OH 43210 USA
                [5 ]ISNI 0000 0000 9883 0707, GRID grid.419217.8, Present Address: Department of Biological and Environmental Sciences, , Le Moyne College, ; Syracuse, NY 13214 USA
                Article
                8145
                10.1038/s41467-018-08145-2
                6343027
                30670691
                ac0388c5-8e05-4cac-b91e-d9a8931b2d5b
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 April 2018
                : 12 December 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content372

                Cited by28

                Most referenced authors686