104
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Global biodiversity scenarios for the year 2100.

          Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The impacts of climate change in coastal marine systems.

            Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change affects marine fishes through the oxygen limitation of thermal tolerance.

              A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.
                Bookmark

                Author and article information

                Journal
                Ecol Evol
                Ecol Evol
                ece3
                Ecology and Evolution
                Blackwell Publishing Ltd
                2045-7758
                2045-7758
                April 2013
                07 March 2013
                : 3
                : 4
                : 1016-1030
                Affiliations
                [1 ]Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University Aberystwyth, UK, SY23 3DA
                [2 ]Centre for Marine Ecosystems Research, Edith Cowan University Perth, Australia, 6027
                Author notes
                Pippa J. Moore, Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK, SY23 3DA. Tel: +44 (0)1970 622293; Fax: +44 (0)1970 622350; E-mail: pim2@ 123456aber.ac.uk

                Funding Information Funding provided through a Marie Curie Career Integration Grant PCIG10-GA-2011-303685 and an Institute of Biological, Environmental and Rural Sciences Ph.D. studentship.

                Article
                10.1002/ece3.516
                3631411
                23610641
                abe882ff-b9d6-4809-94ee-7ef9cc0d193f
                © 2013 Published by Blackwell Publishing Ltd.

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 05 November 2012
                : 23 January 2013
                : 29 January 2013
                Categories
                Original Research

                Evolutionary Biology
                climate change,meta-analysis,multiple stressors,ocean acidification,ocean warming,synergistic interactions

                Comments

                Comment on this article