81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gray matter injury associated with periventricular leukomalacia in the premature infant

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroimaging studies indicate reduced volumes of certain gray matter regions in survivors of prematurity with periventricular leukomalacia (PVL). We hypothesized that subacute and/or chronic gray matter lesions are increased in incidence and severity in PVL cases compared to non-PVL cases at autopsy. Forty-one cases of premature infants were divided based on cerebral white matter histology: PVL ( n = 17) with cerebral white matter gliosis and focal periventricular necrosis; diffuse white matter gliosis (DWMG) ( n = 17) without necrosis; and “

          Negative” group ( n = 7) with no abnormalities. Neuronal loss was found almost exclusively in PVL, with significantly increased incidence and severity in the thalamus (38%), globus pallidus (33%), and cerebellar dentate nucleus (29%) compared to DWMG cases. The incidence of gliosis was significantly increased in PVL compared to DWMG cases in the deep gray nuclei (thalamus/basal ganglia; 50–60% of PVL cases), and basis pontis (100% of PVL cases). Thalamic and basal ganglionic lesions occur almost exclusively in infants with PVL. Gray matter lesions occur in a third or more of PVL cases suggesting that white matter injury generally does not occur in isolation, and that the term “perinatal panencephalopathy” may better describe the scope of the neuropathology.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Regional brain volume abnormalities and long-term cognitive outcome in preterm infants.

          Preterm infants have a high prevalence of long-term cognitive and behavioral disturbances. However, it is not known whether the stresses associated with premature birth disrupt regionally specific brain maturation or whether abnormalities in brain structure contribute to cognitive deficits. To determine whether regional brain volumes differ between term and preterm children and to examine the association of regional brain volumes in prematurely born children with long-term cognitive outcomes. Case-control study conducted in 1998 and 1999 at 2 US university medical schools. A consecutive sample of 25 eight-year-old preterm children recruited from a longitudinal follow-up study of preterm infants and 39 term control children who were recruited from the community and who were comparable with the preterm children in age, sex, maternal education, and minority status. Volumes of cortical subdivisions, ventricular system, cerebellum, basal ganglia, corpus callosum, amygdala, and hippocampus, derived from structural magnetic resonance imaging scans and compared between preterm and term children; correlations of regional brain volumes with cognitive measures (at age 8 years) and perinatal variables among preterm children. Regional cortical volumes were significantly smaller in the preterm children, most prominently in sensorimotor regions (difference: left, 14.6%; right, 14.3% [P<.001 for both]) but also in premotor (left, 11.2%; right, 12.6% [P<.001 for both]), midtemporal (left, 7.4% [P =.01]; right, 10.2% [P<.001]), parieto-occipital (left, 7.9% [P =.01]; right, 7.4% [P =.005]), and subgenual (left, 8.9% [P =.03]; right, 11.7% [P =.01]) cortices. Preterm children's brain volumes were significantly larger (by 105. 7%-271.6%) in the occipital and temporal horns of the ventricles (P<. 001 for all) and smaller in the cerebellum (6.7%; P =.02), basal ganglia (11.4%-13.8%; P
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abnormal cerebral structure is present at term in premature infants.

            Long-term studies of the outcome of very prematurely born infants have clearly documented that the majority of such infants have significant motor, cognitive, and behavioral deficits. However, there is a limited understanding of the nature of the cerebral abnormality underlying these adverse neurologic outcomes. The overall aim of this study was to define quantitatively the alterations in cerebral tissue volumes at term equivalent in a large longitudinal cohort study of very low birth weight premature infants in comparison to term-born infants by using advanced volumetric 3-dimensional magnetic resonance imaging (MRI) techniques. We also aimed to define any relationship of such perinatal lesions as white matter (WM) injury or other potentially adverse factors to the quantitative structural alterations. Additionally, we wished to identify the relationship of the structural alterations to short-term neurodevelopmental outcome. From November 1998 to December 2000, 119 consecutive premature infants admitted to the neonatal intensive care units at Christchurch Women's Hospital (Christchurch, New Zealand) and the Royal Women's Hospital (Melbourne, Australia) were recruited (88% of eligible) after informed parental consent to undergo an MRI scan at term equivalent. Twenty-one term-born infants across both sites were recruited also. Postacquisition advanced 3-dimensional tissue segmentation with 3-dimensional reconstruction was undertaken to estimate volumes of cerebral tissues: gray matter (GM; cortical and deep nuclear structures), WM (myelinated and unmyelinated), and cerebrospinal fluid (CSF). In comparison to the term-born infants, the premature infants at term demonstrated prominent reductions in cerebral cortical GM volume (premature infants [mean +/- SD]: 178 +/- 41 mL; term infants: 227 +/- 26 mL) and in deep nuclear GM volume (premature infants: 10.8 +/- 4.1 mL; term infants: 13.8 +/- 5.2 mL) and an increase in CSF volume (premature infants: 45.6 +/- 22.1 mL; term infants: 28.9 +/- 16 mL). The major predictors of altered cerebral volumes were gestational age at birth and the presence of cerebral WM injury. Infants with significantly reduced cortical GM and deep nuclear GM volumes and increased CSF volume volumes exhibited moderate to severe neurodevelopmental disability at 1 year of age. This MRI study of prematurely born infants further defines the nature of quantitative cerebral structural abnormalities present as early as term equivalent. The abnormalities particularly involve cerebral neuronal regions including both cortex and deep nuclear structures. The pattern of cerebral alterations is related most significantly to the degree of immaturity at birth and to concomitant WM injury. The alterations are followed by abnormal short-term neurodevelopmental outcome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patterning and plasticity of the cerebral cortex.

              The cerebral cortex of the human brain is a sheet of about 10 billion neurons divided into discrete subdivisions or areas that process particular aspects of sensation, movement, and cognition. Recent evidence has begun to transform our understanding of how cortical areas form, make specific connections with other brain regions, develop unique processing networks, and adapt to changes in inputs.
                Bookmark

                Author and article information

                Contributors
                Piersonc@CCRI.net
                Journal
                Acta Neuropathol
                Acta Neuropathologica
                Springer-Verlag (Berlin/Heidelberg )
                0001-6322
                1432-0533
                3 October 2007
                December 2007
                : 114
                : 6
                : 619-631
                Affiliations
                [1 ]Department of Pathology, Children’s Hospital Boston, Boston, MA USA
                [2 ]Department of Pathology, Brigham and Women’s Hospital, Boston, MA USA
                [3 ]Department of Pathology, Harvard Medical School, Boston, MA USA
                [4 ]Department of Pathology, New England Research Institutes, Watertown, MA USA
                [5 ]Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, MA USA
                [6 ]Children’s Research Institute, Research Bldg II- 5th Floor, WA5016, 700 Children’s Drive, Columbus, OH 43205 USA
                Article
                295
                10.1007/s00401-007-0295-5
                2080348
                17912538
                ab924dd9-c7f2-42d2-ae98-586234a3cd8d
                © Springer-Verlag 2007
                History
                : 13 July 2007
                : 10 September 2007
                : 10 September 2007
                Categories
                Original Paper
                Custom metadata
                © Springer-Verlag 2007

                Neurology
                thalamus,perinatal hypoxia–ischemia,neurodevelopmental disability,white matter gliosis,basal ganglia,perinatal panencephalopathy,brainstem

                Comments

                Comment on this article