104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Non-coding RNA

      ,
      Human Molecular Genetics
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The term non-coding RNA (ncRNA) is commonly employed for RNA that does not encode a protein, but this does not mean that such RNAs do not contain information nor have function. Although it has been generally assumed that most genetic information is transacted by proteins, recent evidence suggests that the majority of the genomes of mammals and other complex organisms is in fact transcribed into ncRNAs, many of which are alternatively spliced and/or processed into smaller products. These ncRNAs include microRNAs and snoRNAs (many if not most of which remain to be identified), as well as likely other classes of yet-to-be-discovered small regulatory RNAs, and tens of thousands of longer transcripts (including complex patterns of interlacing and overlapping sense and antisense transcripts), most of whose functions are unknown. These RNAs (including those derived from introns) appear to comprise a hidden layer of internal signals that control various levels of gene expression in physiology and development, including chromatin architecture/epigenetic memory, transcription, RNA splicing, editing, translation and turnover. RNA regulatory networks may determine most of our complex characteristics, play a significant role in disease and constitute an unexplored world of genetic variation both within and between species.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the mammalian genome.

          This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of mammalian microRNA host genes and transcription units.

            To derive a global perspective on the transcription of microRNAs (miRNAs) in mammals, we annotated the genomic position and context of this class of noncoding RNAs (ncRNAs) in the human and mouse genomes. Of the 232 known mammalian miRNAs, we found that 161 overlap with 123 defined transcription units (TUs). We identified miRNAs within introns of 90 protein-coding genes with a broad spectrum of molecular functions, and in both introns and exons of 66 mRNA-like noncoding RNAs (mlncRNAs). In addition, novel families of miRNAs based on host gene identity were identified. The transcription patterns of all miRNA host genes were curated from a variety of sources illustrating spatial, temporal, and physiological regulation of miRNA expression. These findings strongly suggest that miRNAs are transcribed in parallel with their host transcripts, and that the two different transcription classes of miRNAs ('exonic' and 'intronic') identified here may require slightly different mechanisms of biogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes.

              MicroRNAs (miRNAs) are short endogenous RNAs known to post-transcriptionally repress gene expression in animals and plants. A microarray profiling survey revealed the expression patterns of 175 human miRNAs across 24 different human organs. Our results show that proximal pairs of miRNAs are generally coexpressed. In addition, an abrupt transition in the correlation between pairs of expressed miRNAs occurs at a distance of 50 kb, implying that miRNAs separated by <50 kb typically derive from a common transcript. Some microRNAs are within the introns of host genes. Intronic miRNAs are usually coordinately expressed with their host gene mRNA, implying that they also generally derive from a common transcript, and that in situ analyses of host gene expression can be used to probe the spatial and temporal localization of intronic miRNAs.
                Bookmark

                Author and article information

                Journal
                Human Molecular Genetics
                Oxford University Press (OUP)
                1460-2083
                0964-6906
                April 15 2006
                April 15 2006
                April 15 2006
                April 15 2006
                April 15 2006
                April 15 2006
                : 15
                : suppl_1
                : R17-R29
                Article
                10.1093/hmg/ddl046
                16651366
                ab889173-9112-4c72-b908-74895d473fd8
                © 2006
                History

                Comments

                Comment on this article