131
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature Biotechnology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is linearly correlated with treatment effect size (R(2)0.8). Furthermore, the concordance is also affected by transcript abundance and biological complexity of the MOA. RNA-seq outperforms microarray (93% versus 75%) in DEG verification as assessed by quantitative PCR, with the gain mainly due to its improved accuracy for low-abundance transcripts. Nonetheless, classifiers to predict MOAs perform similarly when developed using data from either platform. Therefore, the endpoint studied and its biological complexity, transcript abundance and the genomic application are important factors in transcriptomic research and for clinical and regulatory decision making.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Revisiting global gene expression analysis.

          Gene expression analysis is a widely used and powerful method for investigating the transcriptional behavior of biological systems, for classifying cell states in disease, and for many other purposes. Recent studies indicate that common assumptions currently embedded in experimental and analytical practices can lead to misinterpretation of global gene expression data. We discuss these assumptions and describe solutions that should minimize erroneous interpretation of gene expression data from multiple analysis platforms. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRANSFAC: an integrated system for gene expression regulation.

            TRANSFAC is a database on transcription factors, their genomic binding sites and DNA-binding profiles (http://transfac.gbf.de/TRANSFAC/). Its content has been enhanced, in particular by information about training sequences used for the construction of nucleotide matrices as well as by data on plant sites and factors. Moreover, TRANSFAC has been extended by two new modules: PathoDB provides data on pathologically relevant mutations in regulatory regions and transcription factor genes, whereas S/MARt DB compiles features of scaffold/matrix attached regions (S/MARs) and the proteins binding to them. Additionally, the databases TRANSPATH, about signal transduction, and CYTOMER, about organs and cell types, have been extended and are increasingly integrated with the TRANSFAC data sources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microarrays, deep sequencing and the true measure of the transcriptome

              Microarrays first made the analysis of the transcriptome possible, and have produced much important information. Today, however, researchers are increasingly turning to direct high-throughput sequencing - RNA-Seq - which has considerable advantages for examining transcriptome fine structure - for example in the detection of allele-specific expression and splice junctions. In this article, we discuss the relative merits of the two techniques, the inherent biases in each, and whether all of the vast body of array work needs to be revisited using the newer technology. We conclude that microarrays remain useful and accurate tools for measuring expression levels, and RNA-Seq complements and extends microarray measurements.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Science and Business Media LLC
                1087-0156
                1546-1696
                September 2014
                August 24 2014
                September 2014
                : 32
                : 9
                : 926-932
                Article
                10.1038/nbt.3001
                4243706
                25150839
                ab86e63d-b0ce-4627-a647-09c58845a61b
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article