111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hippocampus is essential for spatial and episodic memory but is damaged early in Alzheimer’s disease and is very sensitive to hypoxia. Understanding how it regulates its oxygen supply is therefore key for designing interventions to preserve its function. However, studies of neurovascular function in the hippocampus in vivo have been limited by its relative inaccessibility. Here we compared hippocampal and visual cortical neurovascular function in awake mice, using two photon imaging of individual neurons and vessels and measures of regional blood flow and haemoglobin oxygenation. We show that blood flow, blood oxygenation and neurovascular coupling were decreased in the hippocampus compared to neocortex, because of differences in both the vascular network and pericyte and endothelial cell function. Modelling oxygen diffusion indicates that these features of the hippocampal vasculature may restrict oxygen availability and could explain its sensitivity to damage during neurological conditions, including Alzheimer’s disease, where the brain’s energy supply is decreased.

          Abstract

          The hippocampus is particularly sensitive to hypoxia but it has been difficult to study blood flow in this region. Here the authors compare the neurovascular function of the hippocampus and cortex and in awake mice, and find differences associated with microvascular structure.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Molecular Architecture of the Mouse Nervous System

          Summary The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blood-brain barrier breakdown in the aging human hippocampus.

            The blood-brain barrier (BBB) limits entry of blood-derived products, pathogens, and cells into the brain that is essential for normal neuronal functioning and information processing. Post-mortem tissue analysis indicates BBB damage in Alzheimer's disease (AD). The timing of BBB breakdown remains, however, elusive. Using an advanced dynamic contrast-enhanced MRI protocol with high spatial and temporal resolutions to quantify regional BBB permeability in the living human brain, we show an age-dependent BBB breakdown in the hippocampus, a region critical for learning and memory that is affected early in AD. The BBB breakdown in the hippocampus and its CA1 and dentate gyrus subdivisions worsened with mild cognitive impairment that correlated with injury to BBB-associated pericytes, as shown by the cerebrospinal fluid analysis. Our data suggest that BBB breakdown is an early event in the aging human brain that begins in the hippocampus and may contribute to cognitive impairment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Globally optimal stitching of tiled 3D microscopic image acquisitions

              Motivation: Modern anatomical and developmental studies often require high-resolution imaging of large specimens in three dimensions (3D). Confocal microscopy produces high-resolution 3D images, but is limited by a relatively small field of view compared with the size of large biological specimens. Therefore, motorized stages that move the sample are used to create a tiled scan of the whole specimen. The physical coordinates provided by the microscope stage are not precise enough to allow direct reconstruction (Stitching) of the whole image from individual image stacks. Results: To optimally stitch a large collection of 3D confocal images, we developed a method that, based on the Fourier Shift Theorem, computes all possible translations between pairs of 3D images, yielding the best overlap in terms of the cross-correlation measure and subsequently finds the globally optimal configuration of the whole group of 3D images. This method avoids the propagation of errors by consecutive registration steps. Additionally, to compensate the brightness differences between tiles, we apply a smooth, non-linear intensity transition between the overlapping images. Our stitching approach is fast, works on 2D and 3D images, and for small image sets does not require prior knowledge about the tile configuration. Availability: The implementation of this method is available as an ImageJ plugin distributed as a part of the Fiji project ( F iji i s j ust I mageJ: http://pacific.mpi-cbg.de/). Contact: tomancak@mpi-cbg.de
                Bookmark

                Author and article information

                Contributors
                catherine.hall@sussex.ac.uk
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                27 May 2021
                27 May 2021
                2021
                : 12
                : 3190
                Affiliations
                GRID grid.12082.39, ISNI 0000 0004 1936 7590, School of Psychology and Sussex Neuroscience, , University of Sussex, Falmer, ; Brighton, United Kingdom
                Author information
                http://orcid.org/0000-0003-3889-1171
                http://orcid.org/0000-0002-3822-5323
                http://orcid.org/0000-0002-8665-558X
                http://orcid.org/0000-0002-0052-7836
                http://orcid.org/0000-0002-2316-7714
                Article
                23508
                10.1038/s41467-021-23508-y
                8160329
                34045465
                ab5f6538-ef39-471e-a14c-8cca39e53bfe
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 October 2019
                : 26 April 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                neuro-vascular interactions,cardiovascular biology
                Uncategorized
                neuro-vascular interactions, cardiovascular biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content73

                Cited by61

                Most referenced authors600