26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep learning via LSTM models for COVID-19 infection forecasting in India

      research-article
      1 , * , 2 , 3
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 pandemic continues to have major impact to health and medical infrastructure, economy, and agriculture. Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections. Moreover, lack of data collection and reporting makes modelling attempts difficult and unreliable. Hence, we need to re-look at the situation with reliable data sources and innovative forecasting models. Deep learning models such as recurrent neural networks are well suited for modelling spatiotemporal sequences. In this paper, we apply recurrent neural networks such as long short term memory (LSTM), bidirectional LSTM, and encoder-decoder LSTM models for multi-step (short-term) COVID-19 infection forecasting. We select Indian states with COVID-19 hotpots and capture the first (2020) and second (2021) wave of infections and provide two months ahead forecast. Our model predicts that the likelihood of another wave of infections in October and November 2021 is low; however, the authorities need to be vigilant given emerging variants of the virus. The accuracy of the predictions motivate the application of the method in other countries and regions. Nevertheless, the challenges in modelling remain due to the reliability of data and difficulties in capturing factors such as population density, logistics, and social aspects such as culture and lifestyle.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An interactive web-based dashboard to track COVID-19 in real time

            In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2

              The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – review & editing
                Role: MethodologyRole: ValidationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2022
                28 January 2022
                28 January 2022
                : 17
                : 1
                : e0262708
                Affiliations
                [1 ] Transitional Artificial Intelligence Research Group, School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
                [2 ] Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Assam, India
                [3 ] Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam, India
                Fuzhou University, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-6353-1464
                Article
                PONE-D-21-19081
                10.1371/journal.pone.0262708
                8797257
                35089976
                aadfdd0d-9f1f-4514-b4b0-aa6f42d36a68
                © 2022 Chandra et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 June 2021
                : 1 January 2022
                Page count
                Figures: 11, Tables: 8, Pages: 28
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Research and Analysis Methods
                Mathematical and Statistical Techniques
                Statistical Methods
                Forecasting
                Physical Sciences
                Mathematics
                Statistics
                Statistical Methods
                Forecasting
                People and Places
                Geographical Locations
                Asia
                India
                People and Places
                Population Groupings
                Ethnicities
                Asian People
                Tamil People
                Computer and Information Sciences
                Artificial Intelligence
                Machine Learning
                Deep Learning
                Medicine and Health Sciences
                Diagnostic Medicine
                Virus Testing
                Computer and Information Sciences
                Neural Networks
                Recurrent Neural Networks
                Biology and Life Sciences
                Neuroscience
                Neural Networks
                Recurrent Neural Networks
                Medicine and Health Sciences
                Epidemiology
                Pandemics
                Custom metadata
                Data and open source code in Python is available for further analysis: https://github.com/sydney-machine-learning/LSTM-COVID-19-India.
                COVID-19

                Uncategorized
                Uncategorized

                Comments

                Comment on this article