13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of Arenga starch in comparison with sago starch.

      1 , ,
      Carbohydrate polymers
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this research was to characterize the composition and physical properties of palm starch obtained from Arenga pinnata in comparison with another palm starch from Metroxylon sago. The amylose contents of both starches were not significantly different. Peak gelatinization temperature was also similar at approximately 67 °C, but arenga starch showed a narrower range of gelatinization temperature than sago. The crystallinity and swelling power capacity of arenga starch were lower than those of sago. Arenga and sago starch paste at low concentrations showed shear thinning behavior, and sago formed a more viscous sol/paste than arenga. The sol-gel transition concentration of sago starch paste was found at a lower concentration than arenga starch. At high concentrations, gel from arenga starch was more rigid than that of sago. The breaking properties and texture profile of both starch gels were also clearly different, suggesting that they are suited for different applications.

          Related collections

          Author and article information

          Journal
          Carbohydr Polym
          Carbohydrate polymers
          Elsevier BV
          1879-1344
          0144-8617
          Feb 15 2013
          : 92
          : 2
          Affiliations
          [1 ] Department of Food Science and Technology, Faculty of Agricultural Technology, Bogor Agricultural Technology, Bogor 16002, Indonesia. dede_adawiyah@yahoo.com
          Article
          S0144-8617(12)01233-7
          10.1016/j.carbpol.2012.12.014
          23399292
          aacfd825-056b-4eab-855c-30a48f09a4b8
          History

          Comments

          Comment on this article