7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The rise of metal–organic polyhedra

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metal–organic polyhedra (MOPs) are comprehensively summarized and classified based on topology, providing new directions for MOP design and forthcoming applications.

          Abstract

          Metal–organic polyhedra are a member of metal–organic materials, and are together with metal–organic frameworks utilized as emerging porous platforms for numerous applications in energy- and bio-related sciences. However, metal–organic polyhedra have been significantly underexplored, unlike their metal–organic framework counterparts. In this review, we will cover the topologies and the classification of metal–organic polyhedra and share several suggestions, which might be useful to synthetic chemists regarding the future directions in this rapid-growing field.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: not found

          A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability.

          Porous crystals are strategic materials with industrial applications within petrochemistry, catalysis, gas storage, and selective separation. Their unique properties are based on the molecular-scale porous character. However, a principal limitation of zeolites and similar oxide-based materials is the relatively small size of the pores, typically in the range of medium-sized molecules, limiting their use in pharmaceutical and fine chemical applications. Metal organic frameworks (MOFs) provided a breakthrough in this respect. New MOFs appear at a high and an increasing pace, but the appearances of new, stable inorganic building bricks are rare. Here we present a new zirconium-based inorganic building brick that allows the synthesis of very high surface area MOFs with unprecedented stability. The high stability is based on the combination of strong Zr-O bonds and the ability of the inner Zr6-cluster to rearrange reversibly upon removal or addition of mu3-OH groups, without any changes in the connecting carboxylates. The weak thermal, chemical, and mechanical stability of most MOFs is probably the most important property that limits their use in large scale industrial applications. The Zr-MOFs presented in this work have the toughness needed for industrial applications; decomposition temperature above 500 degrees C and resistance to most chemicals, and they remain crystalline even after exposure to 10 tons/cm2 of external pressure.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            C60: Buckminsterfullerene

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reticular synthesis and the design of new materials.

              The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
                Bookmark

                Author and article information

                Contributors
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                January 18 2021
                2021
                : 50
                : 1
                : 528-555
                Affiliations
                [1 ]Department of Chemistry
                [2 ]Ulsan National Institute of Science and Technology
                [3 ]Ulsan 44919
                [4 ]Republic of Korea
                Article
                10.1039/D0CS00443J
                33165484
                aab5536a-2eec-4c5d-87e4-547c33b5e09b
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article