4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atypical Human Effector/Memory CD4 + T Cells With a Naive-Like Phenotype

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The induction of adaptive immunological memory, mediated by T and B cells, plays an important role in protective immunity to pathogens induced by previous infections or vaccination. Naive CD4 + T cells that have been primed by antigen develop into memory or effector cells, which may be distinguished by their capability to exert a long-term and rapid response upon re-challenge by antigen, to produce distinct cytokines and surface marker expression phenotypes such as CD45RA/RO, CD27, CD62L, and CCR7. Moreover, a distinct lineage of memory T cells populates tissues (tissue-resident memory T cells or T RM cells) which orchestratea the response to pathogens re encountered at tissue sites. Recent evidence, however, has highlighted that CD4 + naive T cells are much more heterogeneous that previously thought, and that they harbor diversity in phenotypes, differentiation stages, persistence, functions, and anatomic localizations. These cells represent cellular subsets that are extremely heterogeneous and multifunctional at their very initial stages of differentiation, with the potential to become “atypical” memory and effector cells. In this mini review, we focus on recently obtained data from studies in humans, in which this newly recognized heterogeneity in the naive T cell pool was discovered in terms of surface marker expression, cytokine production, or transcriptomic profiles. The deep analysis of immune functions at the single cell level combined with a better understanding of the generation and maintenance of the various atypical memory CD4 + T cell subsets with a naive-like phenotype will be important in immune-monitoring of vaccination and immunotherapies in infectious diseases.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          CXCR3 in T cell function.

          CXCR3 is a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. CXCR3 is rapidly induced on naïve cells following activation and preferentially remains highly expressed on Th1-type CD4(+) T cells and effector CD8(+) T cells. CXCR3 is activated by three interferon-inducible ligands CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC). Early studies demonstrated a role for CXCR3 in the trafficking of Th1 and CD8 T cells to peripheral sites of Th1-type inflammation and the establishment of a Th1 amplification loop mediated by IFNγ and the IFNγ-inducible CXCR3 ligands. More recent studies have also suggested that CXCR3 plays a role in the migration of T cells in the microenvironment of the peripheral tissue and lymphoid compartment, facilitating the interaction of T cells with antigen presenting cells leading to the generation of effector and memory cells. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The lineage decisions of helper T cells.

            After encountering antigen, helper T (T(H)) cells undergo differentiation to effector cells, which can secrete high levels of interferon-gamma, interleukin-4 (IL-4), IL-10 and other immunomodulators. How T(H) cells acquire, and remember, new patterns of gene expression is an area of intensive investigation. The process is remarkably plastic, with cytokines being key regulators. Extrinsic signals seem to be integrated into cell-intrinsic programming, in what is becoming an intriguing story of regulated development. We summarize the latest insights into mechanisms that govern the lineage choices that are made during T(H)-cell responses to foreign pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors.

              Long-living memory stem T cells (T(SCM)) with the ability to self-renew and the plasticity to differentiate into potent effectors could be valuable weapons in adoptive T-cell therapy against cancer. Nonetheless, procedures to specifically target this T-cell population remain elusive. Here, we show that it is possible to differentiate in vitro, expand, and gene modify in clinically compliant conditions CD8(+) T(SCM) lymphocytes starting from naive precursors. Requirements for the generation of this T-cell subset, described as CD62L(+)CCR7(+)CD45RA(+)CD45R0(+)IL-7Rα(+)CD95(+), are CD3/CD28 engagement and culture with IL-7 and IL-15. Accordingly, T(SCM) accumulates early after hematopoietic stem cell transplantation. The gene expression signature and functional phenotype define this population as a distinct memory T-lymphocyte subset, intermediate between naive and central memory cells. When transplanted in immunodeficient mice, gene-modified naive-derived T(SCM) prove superior to other memory lymphocytes for the ability to expand and differentiate into effectors able to mediate a potent xenogeneic GVHD. Furthermore, gene-modified T(SCM) are the only T-cell subset able to expand and mediate GVHD on serial transplantation, suggesting self-renewal capacity in a clinically relevant setting. These findings provide novel insights into the origin and requirements for T(SCM) generation and pave the way for their clinical rapid exploitation in adoptive cell therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                03 December 2018
                2018
                : 9
                : 2832
                Affiliations
                [1] 1Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo, Italy
                [2] 2Department of Biopathology and Medical Biotechnologies, University of Palermo , Palermo, Italy
                [3] 3Department of Infectious Diseases, Leiden University Medical Center , Leiden, Netherlands
                Author notes

                Edited by: Michael Croft, La Jolla Institute for Allergy and Immunology (LJI), United States

                Reviewed by: Sara Hamilton, University of Minnesota Twin Cities, United States; Karl Kai McKinstry, University of Central Florida, United States

                *Correspondence: Nadia Caccamo nadia.caccamo@ 123456unipa.it

                This article was submitted to Immunological Memory, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.02832
                6287111
                30559746
                aa9d931e-c16b-41db-9129-a806319ec0a2
                Copyright © 2018 Caccamo, Joosten, Ottenhoff and Dieli.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 September 2018
                : 16 November 2018
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 30, Pages: 6, Words: 4259
                Categories
                Immunology
                Mini Review

                Immunology
                cd4+ t cells,naive t cells,effector t cells,immunological memory,cytokines,infection,m. tuberculosis infection

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content250

                Cited by21

                Most referenced authors390