There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Background In order to harness what people are tweeting about Zika, there needs to be a computational framework that leverages machine learning techniques to recognize relevant Zika tweets and, further, categorize these into disease-specific categories to address specific societal concerns related to the prevention, transmission, symptoms, and treatment of Zika virus. Objective The purpose of this study was to determine the relevancy of the tweets and what people were tweeting about the 4 disease characteristics of Zika: symptoms, transmission, prevention, and treatment. Methods A combination of natural language processing and machine learning techniques was used to determine what people were tweeting about Zika. Specifically, a two-stage classifier system was built to find relevant tweets about Zika, and then the tweets were categorized into 4 disease categories. Tweets in each disease category were then examined using latent Dirichlet allocation (LDA) to determine the 5 main tweet topics for each disease characteristic. Results Over 4 months, 1,234,605 tweets were collected. The number of tweets by males and females was similar (28.47% [351,453/1,234,605] and 23.02% [284,207/1,234,605], respectively). The classifier performed well on the training and test data for relevancy (F1 score=0.87 and 0.99, respectively) and disease characteristics (F1 score=0.79 and 0.90, respectively). Five topics for each category were found and discussed, with a focus on the symptoms category. Conclusions We demonstrate how categories of discussion on Twitter about an epidemic can be discovered so that public health officials can understand specific societal concerns within the disease-specific categories. Our two-stage classifier was able to identify relevant tweets to enable more specific analysis, including the specific aspects of Zika that were being discussed as well as misinformation being expressed. Future studies can capture sentiments and opinions on epidemic outbreaks like Zika virus in real time, which will likely inform efforts to educate the public at large.
Metrics derived from Twitter and other social media—often referred to as altmetrics—are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually—we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics.
Background Infectious diseases are a leading threat to public health. Accurate and timely monitoring of disease risk and progress can reduce their impact. Mentioning a disease in social networks is correlated with physician visits by patients, and can be used to estimate disease activity. Dengue is the fastest growing mosquito-borne viral disease, with an estimated annual incidence of 390 million infections, of which 96 million manifest clinically. Dengue burden is likely to increase in the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. The epidemiological dynamic of Dengue is complex and difficult to predict, partly due to costly and slow surveillance systems. Methodology / Principal findings In this study, we aimed to quantitatively assess the usefulness of data acquired by Twitter for the early detection and monitoring of Dengue epidemics, both at country and city level at a weekly basis. Here, we evaluated and demonstrated the potential of tweets modeling for Dengue estimation and forecast, in comparison with other available web-based data, Google Trends and Wikipedia access logs. Also, we studied the factors that might influence the goodness-of-fit of the model. We built a simple model based on tweets that was able to ‘nowcast’, i.e. estimate disease numbers in the same week, but also ‘forecast’ disease in future weeks. At the country level, tweets are strongly associated with Dengue cases, and can estimate present and future Dengue cases until 8 weeks in advance. At city level, tweets are also useful for estimating Dengue activity. Our model can be applied successfully to small and less developed cities, suggesting a robust construction, even though it may be influenced by the incidence of the disease, the activity of Twitter locally, and social factors, including human development index and internet access. Conclusions Tweets association with Dengue cases is valuable to assist traditional Dengue surveillance at real-time and low-cost. Tweets are able to successfully nowcast, i.e. estimate Dengue in the present week, but also forecast, i.e. predict Dengue at until 8 weeks in the future, both at country and city level with high estimation capacity.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.