36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Climate change impacts on the biophysics and economics of world fisheries

      , , , ,
      Nature Climate Change
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found

          Ocean acidification: the other CO2 problem.

          Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of climate change on marine pelagic phenology and trophic mismatch.

            Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change affects marine fishes through the oxygen limitation of thermal tolerance.

              A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.
                Bookmark

                Author and article information

                Journal
                Nature Climate Change
                Nature Climate change
                Springer Nature
                1758-678X
                1758-6798
                November 20 2011
                November 20 2011
                : 1
                : 9
                : 449-456
                Article
                10.1038/nclimate1301
                aa1be44b-47e0-4b8b-973a-3c0c2af293e5
                © 2011
                History

                Comments

                Comment on this article