2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA polymerase II speed: a key player in controlling and adapting transcriptome composition

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA polymerase II (RNA Pol II) speed or elongation rate, i.e., the number of nucleotides synthesized per unit of time, is a major determinant of transcriptome composition. It controls co‐transcriptional processes such as splicing, polyadenylation, and transcription termination, thus regulating the production of alternative splice variants, circular RNAs, alternatively polyadenylated transcripts, or read‐through transcripts. RNA Pol II speed itself is regulated in response to intra‐ and extra‐cellular stimuli and can in turn affect the transcriptome composition in response to these stimuli. Evidence points to a potentially important role of transcriptome composition modification through RNA Pol II speed regulation for adaptation of cells to a changing environment, thus pointing to a function of RNA Pol II speed regulation in cellular physiology. Analyzing RNA Pol II speed dynamics may therefore be central to fully understand the regulation of physiological processes, such as the development of multicellular organisms. Recent findings also raise the possibility that RNA Pol II speed deregulation can be detrimental and participate in disease progression. Here, we review initial and current approaches to measure RNA Pol II speed, as well as providing an overview of the factors controlling speed and the co‐transcriptional processes which are affected. Finally, we discuss the role of RNA Pol II speed regulation in cell physiology.

          Abstract

          This review discusses recent advances in understanding the regulation and functional effects of RNA polymerase II speed, as well as approaches for its experimental assessment.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: found
          • Article: not found

          The biogenesis, biology and characterization of circular RNAs

          Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.

            An extensive repertoire of modifications is known to underlie the versatile coding, structural and catalytic functions of RNA, but it remains largely uncharted territory. Although biochemical studies indicate that N(6)-methyladenosine (m(6)A) is the most prevalent internal modification in messenger RNA, an in-depth study of its distribution and functions has been impeded by a lack of robust analytical methods. Here we present the human and mouse m(6)A modification landscape in a transcriptome-wide manner, using a novel approach, m(6)A-seq, based on antibody-mediated capture and massively parallel sequencing. We identify over 12,000 m(6)A sites characterized by a typical consensus in the transcripts of more than 7,000 human genes. Sites preferentially appear in two distinct landmarks--around stop codons and within long internal exons--and are highly conserved between human and mouse. Although most sites are well preserved across normal and cancerous tissues and in response to various stimuli, a subset of stimulus-dependent, dynamically modulated sites is identified. Silencing the m(6)A methyltransferase significantly affects gene expression and alternative splicing patterns, resulting in modulation of the p53 (also known as TP53) signalling pathway and apoptosis. Our findings therefore suggest that RNA decoration by m(6)A has a fundamental role in regulation of gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circular RNAs are abundant, conserved, and associated with ALU repeats.

              Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a "backsplice") and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression.
                Bookmark

                Author and article information

                Contributors
                lisa.muniz@univ-tlse3.fr
                Journal
                EMBO J
                EMBO J
                10.1002/(ISSN)1460-2075
                EMBJ
                embojnl
                The EMBO Journal
                John Wiley and Sons Inc. (Hoboken )
                0261-4189
                1460-2075
                13 July 2021
                02 August 2021
                13 July 2021
                : 40
                : 15 ( doiID: 10.1002/embj.v40.15 )
                : e105740
                Affiliations
                [ 1 ] MCD Centre de Biologie Integrative (CBI) CNRS UPS University of Toulouse Toulouse France
                Author notes
                [*] [* ] *Corresponding author. Tel: + 33 5 61556574; E‐mail: lisa.muniz@ 123456univ-tlse3.fr

                Author information
                https://orcid.org/0000-0001-5809-2444
                https://orcid.org/0000-0003-0412-8477
                https://orcid.org/0000-0003-1398-6481
                Article
                EMBJ2020105740
                10.15252/embj.2020105740
                8327950
                34254686
                aa01a513-e0fa-4093-8faf-ad9a22f95e42
                ©2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 01 May 2021
                : 25 May 2020
                : 10 May 2021
                Page count
                Figures: 4, Tables: 2, Pages: 21, Words: 20174
                Funding
                Funded by: Fondation Toulouse Cancer Sante
                Award ID: DRUGSPEED 2018‐2
                Funded by: Ligue Nationale Contre le Cancer (équipe labellisée) , doi 10.13039/501100004099;
                Award ID: EL‐190350
                Funded by: Fondation de France , doi 10.13039/501100004431;
                Award ID: 185742_ 00087515
                Funded by: Ligue Contre le Cancer 31
                Categories
                Review
                Review
                Custom metadata
                2.0
                02 August 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.4 mode:remove_FC converted:02.08.2021

                Molecular biology
                co‐transcriptional processes,rna polymerase ii,transcription speed,chromatin, epigenetics, genomics & functional genomics

                Comments

                Comment on this article