48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, the importance of dietary carotenoids in skin health and appearance is comprehensively reviewed and discussed. References are made to their applications in health-promoting and nutricosmetic products and the important public health implications that can be derived. Attention is focused on the colourless UV radiation (UVR)-absorbing dietary carotenoids phytoene and phytofluene, which are attracting increased interest in food science and technology, nutrition, health and cosmetics. These compounds are major dietary carotenoids, readily bioavailable, and have been shown to be involved in several health-promoting actions, as pinpointed in recent reviews. The growing evidence that these unique UVR-absorbing carotenoids with distinctive structures, properties (light absorption, susceptibility to oxidation, rigidity, tendency to aggregation, or even fluorescence, in the case of phytofluene) and activities can be beneficial in these contexts is highlighted. Additionally, the recommendation that the levels of these carotenoids are considered in properly assessing skin carotenoid status is made.

          Related collections

          Most cited references192

          • Record: found
          • Abstract: not found
          • Article: not found

          Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition.

            Nonsteroidal anti-inflammatory drugs (NSAIDs) represent one of the most highly utilized classes of pharmaceutical agents in medicine. All NSAIDs act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective drugs. These pharmaceutical agents have quickly become established as important therapeutic medications with potentially fewer side effects than traditional NSAIDs. Additionally, characterization of the two COX isozymes is allowing the discrimination of the roles each play in physiological processes such as homeostatic maintenance of the gastrointestinal tract, renal function, blood clotting, embryonic implantation, parturition, pain, and fever. Of particular importance has been the investigation of COX-1 and -2 isozymic functions in cancer, dysregulation of inflammation, and Alzheimer's disease. More recently, additional heterogeneity in COX-related proteins has been described, with the finding of variants of COX-1 and COX-2 enzymes. These variants may function in tissue-specific physiological and pathophysiological processes and may represent important new targets for drug therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid peroxidation: physiological levels and dual biological effects.

              Etsuo Niki (2009)
              Lipid peroxidation (LPO) has been shown to induce disturbance of membrane organization and functional loss and modification of proteins and DNA bases, and it has been implicated in the pathogenesis of various diseases. At the same time, LPO products have been shown to act as redox signaling mediators. Free and ester forms of both polyunsaturated fatty acids and cholesterol are important substrates for LPO in vivo and they are oxidized by both enzymatic and nonenzymatic mechanisms to give a variety of products. The results of numerous studies reported in the literatures show that the levels of LPO products in plasma of healthy human subjects are below 1 muM and that the molar ratios of LPO products to the respective parent lipids are below 1/1000, that is, below 0.1%. The levels of LPO products in human erythrocytes were found to be higher than those in plasma. Considerable levels of cholesterol oxidation products were observed. Although many LPO products exert cytotoxicity, sublethal concentrations of LPO products induce cellular adaptive responses and enhance tolerance against subsequent oxidative stress through upregulation of antioxidant compounds and enzymes. This adaptive response is observed not only for chemically reactive alpha,beta-unsaturated carbonyl compounds such as 4-hydroxy-2-nonenal and 15-deoxy-delta-12,14-prostaglandin J(2) but also for chemically stable compounds such as hydroxyoctadecadienoic acid, hydroxylcholesterol, and lysophosphatidylcholine. Such opposite dual functions of LPO products imply that LPO, and probably oxidative stress in general, may exert both deleterious and beneficial effects in vivo. LPO as well as reactive oxygen and nitrogen species has been shown to play an important role as a regulator of gene expression and cellular signaling messenger. In order to exert physiologically important functions as a regulator of gene expression and mediator of cellular signaling, the formation of LPO products must be strictly controlled and programmed. In contrast to LPO products by enzymatic oxidation, it appears difficult to regulate the formation of free radical-mediated LPO products. Even such unregulated LPO products may exert beneficial effects at low levels, but excessive unregulated LPO may lead to pathological disorders and diseases.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                16 May 2019
                May 2019
                : 11
                : 5
                : 1093
                Affiliations
                Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain; cstinco@ 123456us.es (C.M.S.); pmapelli@ 123456us.es (P.M.-B.)
                Author notes
                [* ]Correspondence: ajmelendez@ 123456us.es ; Tel.: +34-95455-7017
                Author information
                https://orcid.org/0000-0002-1553-2427
                https://orcid.org/0000-0003-1940-442X
                Article
                nutrients-11-01093
                10.3390/nu11051093
                6566388
                31100970
                a9e201d9-191f-4319-a93b-98eda85d543f
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 February 2019
                : 09 May 2019
                Categories
                Review

                Nutrition & Dietetics
                colourless carotenoids,cosmeceuticals,functional foods,nutraceuticals,nutricosmetics,photoprotection,phytoene,phytofluene,public health

                Comments

                Comment on this article