3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Climate mitigation sustains agricultural research and development expenditure returns for maize yield improvement in developing countries

      ,
      Environmental Research Letters
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Governmental expenditure on agricultural research and development (R&D) has played a substantial role in increasing crop yields in recent decades. However, studies suggest that annual yield growth rates would decline in a warming climate compared to that in a non-warming climate. Here, we present how projected climate could alter maize yield gain owing to a US$ 1 billion increase in agricultural R&D expenditure (referred to as yield response) for 71 maize-producing countries using global gridded crop model simulations with socioeconomic and climate scenarios as inputs. For the middle of this century (2041–2060) under the low warming scenario (shared socioeconomic pathways: SSP126), the median yield response between countries is estimated to be the highest at 27.2% in the low-income group, followed by 6.6% in the lower-middle-income group, 1.0% in the high-income group, and 0.1% in upper-middle-income group. The projected median yield response for lower (the low- and lower-middle)-income groups under the high warming scenario (SSP585) was approximately half than that under the low warming scenario: 27.2% → 15.6% for the low-income, 6.6% → 1.7% for the lower-middle-income, and 1.0% → 0.6% for the high-income groups. For the upper-middle-income group, where there is limited room for adopting high-yielding technology and management already being used in higher (the high- and higher-middle)-income groups, the negative impacts of climate change cannot be offset and yields are projected to decline, even with continued R&D investments (0.1% → –0.2%). Even if the R&D expenditures increase at the same value, expected yield gains will depend on future warming levels. This finding suggests that climate mitigation is a prerequisite for maintaining the yield returns from agricultural R&D investments in developing countries.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          The representative concentration pathways: an overview

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

            Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A new scenario framework for climate change research: the concept of shared socioeconomic pathways

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Environmental Research Letters
                Environ. Res. Lett.
                IOP Publishing
                1748-9326
                April 03 2023
                April 01 2023
                April 03 2023
                April 01 2023
                : 18
                : 4
                : 044026
                Article
                10.1088/1748-9326/acc543
                a9de63a2-a74e-4e00-8538-16fdd0a1742c
                © 2023

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article