3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dlx5 and Msx2 regulate mouse anterior neural tube closure through ephrinA5-EphA7

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homeodomain-containing transcription factors Dlx5 and Msx2 are able to form a heterodimer, and together can regulate embryonic development including skeletogenesis. Dlx5 functions as a transcriptional activator and Msx2 a transcriptional repressor, and they share common target genes. During mouse digit development, the expression domains of Dlx5 and Msx2 overlap at the distal region of the developing terminal phalange, although digit formation and regeneration are not altered in the Dlx5 and Msx2 null mutant embryos. Interestingly, we observed a high rate of defects in neural tube formation in Dlx5 and Msx2 double null mutants. In the absence of both Dlx5 and Msx2, a high occurrence of exencephaly and severe defects in craniofacial morphology are observed. Additionally, Dlx5 and Msx2 expression domain analysis showed overlap of the genes at the apex of the neural folds just prior to neural fold fusion. The expression patterns of ephrinA5 and two isoforms of EphA7 were tested as downstream targets of Dlx5 and Msx2. Results show that EphrinA5 and the truncated isoform of EphA7 are regulated by Dlx5 and Msx2 together, although the full length isoform of EphA7 expression is not altered. Overall, these data show that Dlx5 and Msx2 play a critical role in controlling cranial neural tube morphogenesis by regulating cell adhesion via the ephrinA5 and EphA7 pathway.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic basis of mammalian neurulation.

          More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation.

            The composite structure of the mammalian skull, which forms predominantly via intramembranous ossification, requires precise pre- and post-natal growth regulation of individual calvarial elements. Disturbances of this process frequently cause severe clinical manifestations in humans. Enhanced DNA binding by a mutant MSX2 homeodomain results in a gain of function and produces craniosynostosis in humans. Here we show that Msx2-deficient mice have defects of skull ossification and persistent calvarial foramen. This phenotype results from defective proliferation of osteoprogenitors at the osteogenic front during calvarial morphogenesis, and closely resembles that associated with human MSX2 haploinsufficiency in parietal foramina (PFM). Msx2-/- mice also have defects in endochondral bone formation. In the axial and appendicular skeleton, post-natal deficits in Pth/Pthrp receptor (Pthr) signalling and in expression of marker genes for bone differentiation indicate that Msx2 is required for both chondrogenesis and osteogenesis. Consistent with phenotypes associated with PFM, Msx2-mutant mice also display defective tooth, hair follicle and mammary gland development, and seizures, the latter accompanied by abnormal development of the cerebellum. Most Msx2-mutant phenotypes, including calvarial defects, are enhanced by genetic combination with Msx1 loss of function, indicating that Msx gene dosage can modify expression of the PFM phenotype. Our results provide a developmental basis for PFM and demonstrate that Msx2 is essential at multiple sites during organogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bidirectional modulation of synaptic functions by Eph/ephrin signaling.

              Ephrin ligands and their cognate Eph receptors guide axons during neural development and regulate synapse formation and neuronal plasticity in the adult. Because ephrins are tethered to the plasma membrane and possess reverse signaling properties, the Eph-ephrin system can function in a bidirectional, contact-mediated fashion between two opposing cells. Eph receptors expressed on dendrites are activated by ephrins (on axons or on astrocytes) and regulate spine and synapse formation. They also participate in activity-induced long-term changes in synaptic strength such as long-term potentiation (LTP). When expressed on axon terminals, ephrins promote presynaptic differentiation and enhance neurotransmitter release, thereby supporting presynaptic forms of LTP. In some cases, Eph receptors can simply act as ligands for ephrins without any requirement for Eph receptor signaling, suggesting that the system does not always function bidirectionally.
                Bookmark

                Author and article information

                Journal
                Development, Growth & Differentiation
                Develop. Growth Differ.
                Wiley
                00121592
                April 2013
                April 2013
                February 21 2013
                : 55
                : 3
                : 341-349
                Affiliations
                [1 ]University of Illinois at Chicago College of Medicine; Chicago; Illinois; 60612; USA
                [2 ]Department of Cell and Molecular Biology, School of Science and Engineering; Tulane University; New Orleans; Louisiana; 70115; USA
                [3 ]Department of Developmental and Cell Biology, School of Biological Sciences; University of California at Irvine; Irvine; California; 92697; USA
                Article
                10.1111/dgd.12044
                23425387
                a9b3daa8-f0b6-44d8-aa95-3926bfcce129
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article