277
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention ( q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 ( q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity ( p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise ( q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.

          Author Summary

          Given the important role of epigenetics in gene regulation and disease development, we here present the genome-wide DNA methylation pattern of 476,753 CpG sites in adipose tissue obtained from healthy men. Since environmental factors potentially change metabolism through epigenetic modifications, we examined if a six months exercise intervention alters the DNA methylation pattern as well as gene expression in human adipose tissue. Our results show that global DNA methylation changes and 17,975 individual CpG sites alter the levels of DNA methylation in response to exercise. We also found differential DNA methylation of 39 candidate genes for obesity and type 2 diabetes in human adipose tissue after exercise. Additionally, we provide functional proof that genes, which exhibit both differential DNA methylation and gene expression in human adipose tissue in response to exercise, influence adipocyte metabolism. Together, this study provides the first detailed map of the genome-wide DNA methylation pattern in human adipose tissue and links exercise to altered adipose tissue DNA methylation, potentially affecting adipocyte metabolism.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          High density DNA methylation array with single CpG site resolution.

          We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods (average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance methylation research. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation profiling of human chromosomes 6, 20 and 22

            DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methylation and a core region surrounding the transcriptional start site as informative surrogate for promoter methylation. We find 17% of the 873 analyzed genes differentially methylated in their 5′-untranslated regions (5′-UTR) and about one third of the differentially methylated 5′-UTRs to be inversely correlated with transcription. While our study was controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Epigenetic Predictor of Age

              From the moment of conception, we begin to age. A decay of cellular structures, gene regulation, and DNA sequence ages cells and organisms. DNA methylation patterns change with increasing age and contribute to age related disease. Here we identify 88 sites in or near 80 genes for which the degree of cytosine methylation is significantly correlated with age in saliva of 34 male identical twin pairs between 21 and 55 years of age. Furthermore, we validated sites in the promoters of three genes and replicated our results in a general population sample of 31 males and 29 females between 18 and 70 years of age. The methylation of three sites—in the promoters of the EDARADD, TOM1L1, and NPTX2 genes—is linear with age over a range of five decades. Using just two cytosines from these loci, we built a regression model that explained 73% of the variance in age, and is able to predict the age of an individual with an average accuracy of 5.2 years. In forensic science, such a model could estimate the age of a person, based on a biological sample alone. Furthermore, a measurement of relevant sites in the genome could be a tool in routine medical screening to predict the risk of age-related diseases and to tailor interventions based on the epigenetic bio-age instead of the chronological age.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2013
                June 2013
                27 June 2013
                : 9
                : 6
                : e1003572
                Affiliations
                [1 ]Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, CRC, Malmö, Sweden
                [2 ]Department of Health Sciences, Division of Physiotherapy, Lund University, Lund, Sweden
                [3 ]School of Medicine, Royal Brisbane Clinical School, The University of Queensland, Herston, Queensland, Australia
                [4 ]Department of Clinical Sciences, Vascular Diseases, Lund University, Malmö, Sweden
                [5 ]Department of Experimental Medical Science, Division of Diabetes, Metabolism and Endocrinology, Lund University, BMC C11, Lund, Sweden
                [6 ]Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, CRC, Malmö, Sweden
                Albert Einstein College of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TR PV KFE HAJ LG CL. Performed the experiments: TR CD TD EN ÅT MDN. Analyzed the data: TR PV CD TD EH AHO CL. Contributed reagents/materials/analysis tools: KFE HAJ LG. Wrote the paper: TR PV CD TD EH AHO EN MDN HAJ LG CL.

                Article
                PGENETICS-D-13-00070
                10.1371/journal.pgen.1003572
                3694844
                23825961
                a9a24e20-2b74-4640-ba7d-56c854a352ca
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 January 2013
                : 2 May 2013
                Page count
                Pages: 16
                Funding
                This work was supported by grants from the Swedish Research Council (CL and LG) and Lund University Diabetes Centre (LUDC), the Knut & Alice Wallenbergs stiftelse, Fredrik & Ingrid Thurings stiftelse (TR), Kungliga Fysiografiska sällskapet (TR), Tore Nilssons stiftelse (TR), Påhlssons stiftelse (CL), Novonordisk foundation (CL), ALF (CL), Diabetes förbundet (CL), Söderbergs stiftelse (CL) and by an EU grant (ENGAGE; LG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                DNA modification
                Gene Expression
                Genome-Wide Association Studies
                Medicine
                Endocrinology
                Diabetic Endocrinology
                Diabetes Mellitus Type 2
                Sports and Exercise Medicine

                Genetics
                Genetics

                Comments

                Comment on this article