8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quorum Sensing and Cyclic di-GMP Exert Control Over Motility of Vibrio fischeri KB2B1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial motility is critical for symbiotic colonization by Vibrio fischeri of its host, the squid Euprymna scolopes, facilitating movement from surface biofilms to spaces deep inside the symbiotic organ. While colonization has been studied traditionally using strain ES114, others, including KB2B1, can outcompete ES114 for colonization for a variety of reasons, including superior biofilm formation. We report here that KB2B1 also exhibits an unusual pattern of migration through a soft agar medium: whereas ES114 migrates rapidly and steadily, KB2B1 migrates slowly and then ceases migration. To better understand this phenomenon, we isolated and sequenced five motile KB2B1 suppressor mutants. One harbored a mutation in the gene for the cAMP receptor protein ( crp); because this strain also exhibited a growth defect, it was not characterized further. Two other suppressors contained mutations in the quorum sensing pathway that controls bacterial bioluminescence in response to cell density, and two had mutations in the diguanylate cyclase (DGC) gene VF_1200. Subsequent analysis indicated that (1) the quorum sensing mutations shifted KB2B1 to a perceived low cell density state and (2) the high cell density state inhibited migration via the downstream regulator LitR. Similar to the initial point mutations, deletion of the VF_1200 DGC gene increased migration. Consistent with the possibility that production of the second messenger c-di-GMP inhibited the motility of KB2B1, reporter-based measurements of c-di-GMP revealed that KB2B1 produced higher levels of c-di-GMP than ES114, and overproduction of a c-di-GMP phosphodiesterase promoted migration of KB2B1. Finally, we assessed the role of viscosity in controlling the quorum sensing pathway using polyvinylpyrrolidone and found that viscosity increased light production of KB2B1 but not ES114. Together, our data indicate that while the two strains share regulators in common, they differ in the specifics of the regulatory control over downstream phenotypes such as motility.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq.

          Next-generation DNA sequencing (NGS) can be used to reconstruct eco-evolutionary population dynamics and to identify the genetic basis of adaptation in laboratory evolution experiments. Here, we describe how to run the open-source breseq computational pipeline to identify and annotate genetic differences found in whole-genome and whole-population NGS data from haploid microbes where a high-quality reference genome is available. These methods can also be used to analyze mutants isolated in genetic screens and to detect unintended mutations that may occur during strain construction and genome editing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclic di-GMP: second messenger extraordinaire

            Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension

              Gene splicing by overlap extension is a new approach for recombining DNA molecules at precise junctions irrespective of nucleotide sequences at the recombination site and without the use of restriction endonucleases or ligase. Fragments from the genes that are to be recombined are generated in separate polymerase chain reactions (PCRs). The primers are designed so that the ends of the products contain complementary sequences. When these PCR products are mixed, denatured, and reannealed, the strands having the matching sequences at their 3' ends overlap and act as primers for each other. Extension of this overlap by DNA polymerase produces a molecule in which the original sequences are 'spliced' together. This technique is used to construct a gene encoding a mosaic fusion protein comprised of parts of two different class-I major histocompatibility genes. This simple and widely applicable approach has significant advantages over standard recombinant DNA techniques.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                28 June 2021
                2021
                : 12
                : 690459
                Affiliations
                [1] 1Department of Microbiology and Immunology, Loyola University Chicago , Maywood, IL, United States
                [2] 2Molecular, Cellular, and Biomedical Sciences, University of New Hampshire , Durham, NH, United States
                Author notes

                Edited by: Masahiro Ito, Toyo University, Japan

                Reviewed by: Julia Van Kessel, Indiana University Bloomington, United States; Spencer V. Nyholm, University of Connecticut, United States

                *Correspondence: Karen L. Visick, kvisick@ 123456luc.edu

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.690459
                8273514
                34262549
                a99e0c02-57fd-4de4-b9c8-cc782cf6ac7d
                Copyright © 2021 Dial, Eichinger, Foxall, Corcoran, Tischler, Bolz, Whistler and Visick.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 April 2021
                : 28 May 2021
                Page count
                Figures: 11, Tables: 4, Equations: 0, References: 64, Pages: 17, Words: 0
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R35 GM130355
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                vibrio fischeri,luminescence,quorum sensing,c-di-gmp,motility,symbiosis,euprymna scolopes

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content136

                Cited by8

                Most referenced authors346