12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-99a/100∼125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          miR-99a/100, let-7, and miR-125b paralogs are encoded in two tricistrons and are highly expressed in hematopoietic stem cells (HSCs). Emmrich et al. demonstrate that miR-99a/100∼125b tricistrons are transcribed as a polycistronic message and functionally converge at the combinatorial block of the TGFβ pathway. Down-regulating tumor suppressor genes APC/APC2 stabilized active β-catenin and enhanced Wnt signaling. These tricistronic miRNAs promoted sustained expansion of murine and human HSCs by switching the balance between Wnt and TGFβ signaling.

          Abstract

          Although regulation of stem cell homeostasis by microRNAs (miRNAs) is well studied, it is unclear how individual miRNAs genomically encoded within an organized polycistron can interact to induce an integrated phenotype. miR-99a/100, let-7, and miR-125b paralogs are encoded in two tricistrons on human chromosomes 11 and 21. They are highly expressed in hematopoietic stem cells (HSCs) and acute megakaryoblastic leukemia (AMKL), an aggressive form of leukemia with poor prognosis. Here, we show that miR-99a/100∼125b tricistrons are transcribed as a polycistronic message transactivated by the homeobox transcription factor HOXA10. Integrative analysis of global gene expression profiling, miRNA target prediction, and pathway architecture revealed that miR-99a/100, let-7, and miR-125b functionally converge at the combinatorial block of the transforming growth factor β (TGFβ) pathway by targeting four receptor subunits and two SMAD signaling transducers. In addition, down-regulation of tumor suppressor genes adenomatous polyposis coli ( APC)/ APC2 stabilizes active β-catenin and enhances Wnt signaling. By switching the balance between Wnt and TGFβ signaling, the concerted action of these tricistronic miRNAs promoted sustained expansion of murine and human HSCs in vitro or in vivo while favoring megakaryocytic differentiation. Hence, our study explains the high phylogenetic conservation of the miR-99a/100∼125b tricistrons controlling stem cell homeostasis, the deregulation of which contributes to the development of AMKL.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

          Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miRecords: an integrated resource for microRNA–target interactions

            MicroRNAs (miRNAs) are an important class of small noncoding RNAs capable of regulating other genes’ expression. Much progress has been made in computational target prediction of miRNAs in recent years. More than 10 miRNA target prediction programs have been established, yet, the prediction of animal miRNA targets remains a challenging task. We have developed miRecords, an integrated resource for animal miRNA–target interactions. The Validated Targets component of this resource hosts a large, high-quality manually curated database of experimentally validated miRNA–target interactions with systematic documentation of experimental support for each interaction. The current release of this database includes 1135 records of validated miRNA–target interactions between 301 miRNAs and 902 target genes in seven animal species. The Predicted Targets component of miRecords stores predicted miRNA targets produced by 11 established miRNA target prediction programs. miRecords is expected to serve as a useful resource not only for experimental miRNA researchers, but also for informatics scientists developing the next-generation miRNA target prediction programs. The miRecords is available at http://miRecords.umn.edu/miRecords.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt signalling and its impact on development and cancer.

              The Wnt signalling pathway is an ancient system that has been highly conserved during evolution. It has a crucial role in the embryonic development of all animal species, in the regeneration of tissues in adult organisms and in many other processes. Mutations or deregulated expression of components of the Wnt pathway can induce disease, most importantly cancer. The first gene to be identified that encodes a Wnt signalling component, Int1 (integration 1), was molecularly characterized from mouse tumour cells 25 years ago. In parallel, the homologous gene Wingless in Drosophila melanogaster, which produces developmental defects in embryos, was characterized. Since then, further components of the Wnt pathway have been identified and their epistatic relationships have been defined. This article is a Timeline of crucial discoveries about the components and functions of this essential pathway.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                15 April 2014
                : 28
                : 8
                : 858-874
                Affiliations
                [1 ]Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany;
                [2 ]Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA;
                [3 ]Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany;
                [4 ]Division of Hematology/Oncology, Children’s Hospital Boston, Boston, Massachusetts 02115, USA
                Author notes
                [5 ]Corresponding author E-mail klusmann.jan-henning@ 123456mh-hannover.de
                Article
                8711660
                10.1101/gad.233791.113
                4003278
                24736844
                a974d381-b21d-45ec-b4ae-5ff095fff7f3
                © 2014 Emmrich et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 28 October 2013
                : 19 March 2014
                Page count
                Pages: 17
                Categories
                Research Paper

                amkl,tgfβ,wnt,hematopoiesis,let-7,mir-125
                amkl, tgfβ, wnt, hematopoiesis, let-7, mir-125

                Comments

                Comment on this article