32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Weaning Age and Its Effect on the Development of the Swine Gut Microbiome and Resistome

      research-article
      a , , a , b , b
      mSystems
      American Society for Microbiology
      swine, microbiome, metagenomics, resistome, weaning, CAZymes, antimicrobial resistance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Piglets are often weaned between 19 and 22 days of age in North America, although in some swine operations this may occur at 14 days or less. Piglets are abruptly separated from their sow at weaning and are quickly transitioned from sow’s milk to a plant-based diet. The effect of weaning age on the long-term development of the pig gut microbiome is largely unknown. Here, pigs were weaned at either 14, 21, or 28 days of age, and fecal samples were collected 20 times from day 4 (neonatal) through marketing at day 140. The fecal microbiome was characterized using 16S rRNA gene and shotgun metagenomic sequencing. The fecal microbiome of all piglets shifted significantly 3 to 7 days postweaning, with an increase in microbial diversity. Several Prevotella spp. increased in relative abundance immediately after weaning, as did butyrate-producing species such as Butyricicoccus porcorum, Faecalibacterium prausnitzii, and Megasphaera elsdenii. Within 7 days of weaning, the gut microbiome of pigs weaned at 21 and 28 days of age resembled that of pigs weaned at 14 days. Resistance genes to most antimicrobial classes decreased in relative abundance postweaning, with the exception of those conferring resistance to tetracyclines and macrolides-lincosamides-streptogramin B. The relative abundance of microbial carbohydrate-active enzymes (CAZymes) changed significantly in the postweaning period, with an enrichment of CAZymes involved in degradation of plant-derived polysaccharides. These results demonstrate that the pig gut microbiome tends change in a predictable manner postweaning and that weaning age has only a temporary effect on this microbiome.

          IMPORTANCE Piglets are abruptly separated from their sow at weaning and are quickly transitioned from sow’s milk to a plant-based diet. This is the most important period in commercial swine production, yet the effect of weaning age on the long-term development of the pig gut microbiome is largely unknown. Metagenomic sequencing allows for a higher-resolution assessment of the pig gut microbiome and enables characterization of the resistome. Here, we used metagenomic sequencing to identify bacterial species that were enriched postweaning and therefore may provide targets for future manipulation studies. In addition, functional profiling of the microbiome indicated that many carbohydrate and metabolic enzymes decrease in relative abundance after weaning. This study also highlights the challenges faced in reducing antimicrobial resistance in pigs, as genes conferring tetracycline and macrolide resistance remained relatively stable from 7 days of age through to market weight at 140 days despite no exposure to antimicrobials.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast gapped-read alignment with Bowtie 2.

            As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DADA2: High resolution sample inference from Illumina amplicon data

              We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSystems
                mSystems
                msystems
                mSystems
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5077
                23 November 2021
                Nov-Dec 2021
                23 November 2021
                : 6
                : 6
                : e00682-21
                Affiliations
                [a ] Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
                [b ] USDA, ARS, National Animal Disease Center, Ames, Iowa, USA
                Teagasc Food Research Centre
                Author notes

                Citation Holman DB, Gzyl KE, Mou KT, Allen HK. 2021. Weaning age and its effect on the development of the swine gut microbiome and resistome. mSystems 6:e00682-21. https://doi.org/10.1128/mSystems.00682-21.

                Author information
                https://orcid.org/0000-0001-5306-3732
                Article
                mSystems00682-21 msystems.00682-21
                10.1128/mSystems.00682-21
                8609972
                34812652
                a9413bcc-df08-49da-975a-dd0f25380a81
                © Crown copyright 2021.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 2 June 2021
                : 18 October 2021
                Page count
                supplementary-material: 10, Figures: 5, Tables: 0, Equations: 0, References: 64, Pages: 12, Words: 7980
                Funding
                Funded by: Alberta Agriculture and Forestry, FundRef https://doi.org/10.13039/100012236;
                Award ID: 2018R009R
                Award Recipient :
                Categories
                Research Article
                applied-and-industrial-microbiology, Applied and Industrial Microbiology
                Custom metadata
                November/December 2021

                swine,microbiome,metagenomics,resistome,weaning,cazymes,antimicrobial resistance

                Comments

                Comment on this article