0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Moricizine prevents atrial fibrillation by late sodium current inhibition in atrial myocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Enhanced late sodium current (INaL) is reportedly related to an increased risk of atrial fibrillation (AF). Moricizine, as a widely used anti-arrhythmia drug for suppressing ventricular tachycardia, has also been shown to prevent paroxysmal AF. However, the mechanism of its therapeutic effect remains poorly understood.

          Methods

          Angiotensin II (Ang II) was induced in C57Bl/6 mice (male wild-type) for 4 weeks to increase the susceptibility of AF, and acetylcholine-calcium chloride was used to induce AF. The whole-cell patch-clamp technique was used to detect INaL from isolated atrial myocytes. The expression of proteins in atrial of mice and HL-1 cells were examined by Western-blot.

          Results

          The results showed that moricizine significantly inhibited Ang II-mediated atrial enlargement and reduced AF vulnerability. We found that the densities of INaL were enhanced in Ang II-treated left and right atrial cardiomyocytes. Simultaneously, the Ang II-induced increase in INaL currents density was alleviated by the administration of moricizine, and no alteration in Nav1.5 expression was observed. In normal isolated atrial myocytes, moricizine significantly reduced Sea anemone toxin II (ATX II)-enhanced INaL density with a reduction of peak sodium currents. In addition, moricizine reduced the Ang II-induced upregulation of phosphorylated calcium/calmodulin-dependent protein kinase-II (p-CaMKII) in both the left and right atria. In HL-1 cells, moricizine also reduced the upregulation of p-CaMKII with Ang II and ATX II intervention, respectively.

          Conclusions

          Our results indicate that Ang II enhances the INaL via activation of CaMKII. Moricizine inhibits INaL and reduces CaMKII activation, which may be one of the mechanisms of moricizine suppression of AF.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers.

          This article updates the guidance published in 2015 for authors submitting papers to British Journal of Pharmacology (Curtis et al., 2015) and is intended to provide the rubric for peer review. Thus, it is directed towards authors, reviewers and editors. Explanations for many of the requirements were outlined previously and are not restated here. The new guidelines are intended to replace those published previously. The guidelines have been simplified for ease of understanding by authors, to make it more straightforward for peer reviewers to check compliance and to facilitate the curation of the journal's efforts to improve standards.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression.

            Atrial fibrillation (AF) is the most common clinically relevant arrhythmia and is associated with increased morbidity and mortality. The incidence of AF is expected to continue to rise with the aging of the population. AF is generally considered to be a progressive condition, occurring first in a paroxysmal form, then in persistent, and then long-standing persistent (chronic or permanent) forms. However, not all patients go through every phase, and the time spent in each can vary widely. Research over the past decades has identified a multitude of pathophysiological processes contributing to the initiation, maintenance, and progression of AF. However, many aspects of AF pathophysiology remain incompletely understood. In this review, we discuss the cellular and molecular electrophysiology of AF initiation, maintenance, and progression, predominantly based on recent data obtained in human tissue and animal models. The central role of Ca(2+)-handling abnormalities in both focal ectopic activity and AF substrate progression is discussed, along with the underlying molecular basis. We also deal with the ionic determinants that govern AF initiation and maintenance, as well as the structural remodeling that stabilizes AF-maintaining re-entrant mechanisms and finally makes the arrhythmia refractory to therapy. In addition, we highlight important gaps in our current understanding, particularly with respect to the translation of these concepts to the clinical setting. Ultimately, a comprehensive understanding of AF pathophysiology is expected to foster the development of improved pharmacological and nonpharmacological therapeutic approaches and to greatly improve clinical management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation.

              Electrical, structural, and Ca2+ -handling remodeling contribute to the perpetuation/progression of atrial fibrillation (AF). Recent evidence has suggested a role for spontaneous sarcoplasmic reticulum Ca2+ -release events in long-standing persistent AF, but the occurrence and mechanisms of sarcoplasmic reticulum Ca2+ -release events in paroxysmal AF (pAF) are unknown. Right-atrial appendages from control sinus rhythm patients or patients with pAF (last episode a median of 10-20 days preoperatively) were analyzed with simultaneous measurements of [Ca2+]i (fluo-3-acetoxymethyl ester) and membrane currents/action potentials (patch-clamp) in isolated atrial cardiomyocytes, and Western blot. Action potential duration, L-type Ca2+ current, and Na+ /Ca2+ -exchange current were unaltered in pAF, indicating the absence of AF-induced electrical remodeling. In contrast, there were increases in SR Ca2+ leak and incidence of delayed after-depolarizations in pAF. Ca2+ -transient amplitude and sarcoplasmic reticulum Ca2+ load (caffeine-induced Ca2+ -transient amplitude, integrated Na+/Ca2+ -exchange current) were larger in pAF. Ca2+ -transient decay was faster in pAF, but the decay of caffeine-induced Ca2+ transients was unaltered, suggesting increased SERCA2a function. In agreement, phosphorylation (inactivation) of the SERCA2a-inhibitor protein phospholamban was increased in pAF. Ryanodine receptor fractional phosphorylation was unaltered in pAF, whereas ryanodine receptor expression and single-channel open probability were increased. A novel computational model of the human atrial cardiomyocyte indicated that both ryanodine receptor dysregulation and enhanced SERCA2a activity promote increased sarcoplasmic reticulum Ca2+ leak and sarcoplasmic reticulum Ca2+ -release events, causing delayed after-depolarizations/triggered activity in pAF. Increased diastolic sarcoplasmic reticulum Ca2+ leak and related delayed after-depolarizations/triggered activity promote cellular arrhythmogenesis in pAF patients. Biochemical, functional, and modeling studies point to a combination of increased sarcoplasmic reticulum Ca2+ load related to phospholamban hyperphosphorylation and ryanodine receptor dysregulation as underlying mechanisms.
                Bookmark

                Author and article information

                Journal
                J Thorac Dis
                J Thorac Dis
                JTD
                Journal of Thoracic Disease
                AME Publishing Company
                2072-1439
                2077-6624
                June 2022
                June 2022
                : 14
                : 6
                : 2187-2200
                Affiliations
                [1 ]Department of Cardiology, Zhongshan Hospital, Fudan University , deptShanghai Institute of Cardiovascular Disease , Shanghai, China;
                [2 ]deptDepartment of Cardiology , The Affiliated Wuxi People’s Hospital of Nanjing Medical University , Wuxi, China
                Author notes

                Contributions: (I) Conception and design: T Zou, Q Chen, C Chen, W Zhu; (II) Administrative support: T Zou, G Liu, Y Ling, W Zhu, LL Qian, RX Wang; (III) Provision of study materials or patients: T Zou, Y Pang, Y Xu, K Cheng; (IV) Collection and assembly of data: T Zou, Q Chen, C Chen, LL Qian; (V) Data analysis and interpretation: T Zou, Q Chen, C Chen, W Zhu, RX Wang, J Ge; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

                [#]

                These authors contributed equally to this work.

                Correspondence to: Dr. Wenqing Zhu. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Email: zhu.wenqing@ 123456zs-hospital.sh.cn ; Dr. Ru-Xing Wang. Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214000, China. Email: ruxingw@ 123456aliyun.com .
                Article
                jtd-14-06-2187
                10.21037/jtd-22-534
                9264100
                35813708
                a940083c-4712-40b8-b5cf-239c834666c0
                2022 Journal of Thoracic Disease. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 28 March 2022
                : 18 May 2022
                Categories
                Original Article

                moricizine,atrial fibrillation,late sodium current,calcium/calmodulin-dependent protein kinase-ii (camkii)

                Comments

                Comment on this article