13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation.

      1 , ,
      Molecular microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have investigated a potential role for GacA, the response regulator of the GacA/GacS two-component regulatory system, in Pseudomonas aeruginosa biofilm formation. When gacA was disrupted in strain PA14, a 10-fold reduction in biofilm formation capacity resulted relative to wild-type PA14. However, no significant difference was observed in the planktonic growth rate of PA14 gacA(-). Providing gacA in trans on the multicopy vector pUCP-gacA abrogated the biofilm formation defect. Scanning electron microscopy of biofilms formed by PA14 gacA(-) revealed diffuse clusters of cells that failed to aggregate into microcolonies, implying a deficit in biofilm development or surface translocation. Motility assays revealed no decrease in PA14 gacA(-) twitching or swimming abilities, indicating that the defect in biofilm formation is independent of flagellar-mediated attachment and solid surface translocation by pili. Autoinducer and alginate bioassays were performed similarly, and no difference in production levels was observed, indicating that this is not merely an upstream effect on either quorum sensing or alginate production. Antibiotic susceptibility profiling demonstrated that PA14 gacA(-) biofilms have moderately decreased resistance to a range of antibiotics relative to PA14 wild type. This study establishes GacA as a new and independent regulatory element in P. aeruginosa biofilm formation.

          Related collections

          Author and article information

          Journal
          Mol Microbiol
          Molecular microbiology
          Wiley
          0950-382X
          0950-382X
          Jun 2001
          : 40
          : 5
          Affiliations
          [1 ] Department of Biological Sciences, The University of Calgary, 2500 University Drive NW, Calgary AB, Canada T2N 1N4.
          Article
          mmi2469
          10.1046/j.1365-2958.2001.02469.x
          11401724
          a9208814-68d8-4ec5-814d-5b0303f27343
          History

          Comments

          Comment on this article