17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revisit 18F-fluorodeoxyglucose oncology positron emission tomography: “systems molecular imaging” of glucose metabolism

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          18F-fluorodeoxyglucose ( 18F-FDG) positron emission tomography has become an important tool for detection, staging and management of many types of cancer. Oncology application of 18F-FDG bases on the knowledge that increase in glucose demand and utilization is a fundamental features of cancer. Pasteur effect, Warburg effect and reverse Warburg effect have been used to explain glucose metabolism in cancer. 18F-FDG accumulation in cancer is reportedly microenvironment-dependent, 18F-FDG avidly accumulates in poorly proliferating and hypoxic cancer cells, but low in well perfused (and proliferating) cancer cells. Cancer is a heterogeneous and complex “organ” containing multiple components, therefore, cancer needs to be investigated from systems biology point of view, we proposed the concept of “systems molecular imaging” for much better understanding systems biology of cancer.

          This article revisits 18F-FDG uptake mechanisms, its oncology applications and the role of 18F-FDG PET for “systems molecular imaging”.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.

            Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect," explaining its powerful predictive value.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements.

              Direct oxygen partial pressure (pO2) readings in breast cancers, in fibrocystic disease, and in the normal breast have been obtained using a novel technique which allows for the systematic evaluation of the oxygenation status as a function of pathological staging and histological grading. Measurements were performed in awake pre- and postmenopausal patients with well-defined arterial blood gas status. The measuring procedure encompasses a computerized electrode movement in the tissue which avoids significant compression artifacts and allows routine measurement in human tumors before, during, and after treatment. Using this reliable technique, pO2 measurements in the normal breast and in fibrocystic disease resulted in oxygenation patterns which were characteristic for normal, adequately supplied tissues. The median pO2 values were 65 and 67 mm Hg, respectively, with no pO2 readings below 12.5 mm Hg in the normal breast, and less than or equal to 5 mm Hg in fibrocystic disease, respectively. In contrast, in breast cancers the median pO2 value was 30 mm Hg (pooled data for pathological stages T1-T4). To date, 6 of 15 breast cancers exhibited pO2 values between zero and 2.5 mm Hg, i.e., tissue areas with less than half-maximum radiosensitivity. The oxygenation pattern in breast cancers and the occurrence of hypoxia and/or anoxia did not correlate with either the pathological stages and histological grades or with a series of clinically relevant parameters. No significant differences were found between pre- and postmenopausal tumors and between lobular and ductal carcinomas. Tumor-to-tumor variability in the oxygenation pattern was more pronounced than intra-tumor heterogeneity. pO2 variations within a tumor cannot be predicted, e.g., as a function of the measuring site (tumor center versus periphery).
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                27 June 2017
                29 March 2017
                : 8
                : 26
                : 43536-43542
                Affiliations
                1 PET/CT/MRI Center, The Fourth Hospital of Harbin Medical University, Harbin, China
                2 Molecular Imaging Research Center, Harbin Medical University, Harbin, China
                3 Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin, China
                Author notes
                Correspondence to: Baozhong Shen, shenbzh@ 123456vip.sina.com
                Article
                16647
                10.18632/oncotarget.16647
                5522167
                28402949
                a90b6001-af29-4842-ab2b-cdf89e98815e
                Copyright: © 2017 Shen et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 2 February 2017
                : 11 March 2017
                Categories
                Review

                Oncology & Radiotherapy
                18f-fdg,positron emission tomography,cancer,hypoxia,glucose metabolism
                Oncology & Radiotherapy
                18f-fdg, positron emission tomography, cancer, hypoxia, glucose metabolism

                Comments

                Comment on this article