54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous publications have applied “pathway” analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets, but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this association. Our method is implemented in the PLINK software package.

          Author Summary

          Specific rare deletion and duplication events in the genome have now been shown to be associated with neuropsychiatric diseases such as 16p11.2 to autism and 22q11.21 to schizophrenia. However, controversy remains as to whether rare events impacting certain pathways as a group increase the risk of disease, and if so, what those pathways are. Other studies have used standard gene-set enrichment approaches to demonstrate that events discovered in cases contain more genes in neuro-developmental pathways than would be expected by chance. However, these analyses do not explicitly compare the relative enrichment in cases to any enrichment that may also be present in controls. Therefore, they can be confounded by the large size of brain genes or by larger size or frequency of CNVs in cases. Here we propose a case-control statistical test to assess whether a key pathway is differentially impacted by CNVs in cases compared to controls. Our approach is robust to skewed gene sizes and case-control differences in CNV rate and size.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural variation of chromosomes in autism spectrum disorder.

            Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association between microdeletion and microduplication at 16p11.2 and autism.

              Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Children's Hospital Boston and in a large population study in Iceland. Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Children's Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Children's Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations. Copyright 2008 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2010
                September 2010
                9 September 2010
                : 6
                : 9
                : e1001097
                Affiliations
                [1 ]Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
                [2 ]Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [3 ]Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [4 ]Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America
                [5 ]Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
                [6 ]Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [7 ]Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [8 ]Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [9 ]Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, United States of America
                University of Alabama at Birmingham, United States of America
                Author notes

                Conceived and designed the experiments: SR SAM DA PS SP MJD. Performed the experiments: SR JMK. Analyzed the data: SR JMK SAM SP MJD. Contributed reagents/materials/analysis tools: JMK PS. Wrote the paper: SR DA PS SP MJD.

                ¶ Please see Acknowledgements for consortium authorship.

                Article
                10-PLGE-RA-NV-2789R3
                10.1371/journal.pgen.1001097
                2936523
                20838587
                a90b21ca-3e92-4983-8ac6-ad6ad76b9f3b
                Raychaudhuri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 March 2010
                : 27 July 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Computational Biology/Genomics
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Complex Traits
                Genetics and Genomics/Genetics of Disease
                Genetics and Genomics/Medical Genetics
                Neurological Disorders/Neurogenetics
                Neurological Disorders/Neuropsychiatric Disorders

                Genetics
                Genetics

                Comments

                Comment on this article