Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Partial Inhibition of Mitochondrial Complex I Reduces Tau Pathology and Improves Energy Homeostasis and Synaptic Function in 3xTg-AD Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer’s disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown.

          Objective:

          To investigate the effect of specific MCI inhibitor tricyclic pyrone compound CP2 on levels of human pTau, memory function, long term potentiation (LTP), and energy homeostasis in 18-month-old 3xTg-AD mice and explore the potential mechanisms.

          Methods:

          CP2 was administered to male and female 3xTg-AD mice from 3.5–18 months of age. Cognitive function was assessed using the Morris water maze. Glucose metabolism was measured in periphery using a glucose tolerance test and in the brain using fluorodeoxyglucose F18 positron-emission tomography (FDG-PET). LTP was evaluated using electrophysiology in the hippocampus. The expression of key proteins associated with neuroprotective mechanisms were assessed by western blotting.

          Results:

          Chronic CP2 treatment restored synaptic activity in female 3xTg-AD mice; cognitive function, levels of synaptic proteins, glucose metabolism, and energy homeostasis were improved in male and female 3xTg-AD mice. Significant reduction of human pTau in the brain was associated with increased activity of protein phosphatase of type 2A (PP2A), and reduced activity of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β).

          Conclusion:

          CP2 treatment protected against synaptic dysfunction and memory impairment in symptomatic 3xTg-AD mice, and reduced levels of human pTau, indicating that targeting mitochondria with small molecule specific MCI inhibitors represents a promising strategy for treating AD.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          A synaptic model of memory: long-term potentiation in the hippocampus.

          Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-D-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tau-mediated neurodegeneration in Alzheimer's disease and related disorders.

            Advances in our understanding of the mechanisms of tau-mediated neurodegeneration in Alzheimer's disease (AD) and related tauopathies, which are characterized by prominent CNS accumulations of fibrillar tau inclusions, are rapidly moving this previously underexplored disease pathway to centre stage for disease-modifying drug discovery efforts. However, controversies abound concerning whether or not the deleterious effects of tau pathologies result from toxic gains-of-function by pathological tau or from critical losses of normal tau function in the disease state. This Review summarizes the most recent advances in our knowledge of the mechanisms of tau-mediated neurodegeneration to forge an integrated concept of those tau-linked disease processes that drive the onset and progression of AD and related tauopathies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model.

              Filamentous tau inclusions are hallmarks of Alzheimer's disease (AD) and related tauopathies, but earlier pathologies may herald disease onset. To investigate this, we studied wild-type and P301S mutant human tau transgenic (Tg) mice. Filamentous tau lesions developed in P301S Tg mice at 6 months of age, and progressively accumulated in association with striking neuron loss as well as hippocampal and entorhinal cortical atrophy by 9-12 months of age. Remarkably, hippocampal synapse loss and impaired synaptic function were detected in 3 month old P301S Tg mice before fibrillary tau tangles emerged. Prominent microglial activation also preceded tangle formation. Importantly, immunosuppression of young P301S Tg mice with FK506 attenuated tau pathology and increased lifespan, thereby linking neuroinflammation to early progression of tauopathies. Thus, hippocampal synaptic pathology and microgliosis may be the earliest manifestations of neurodegenerative tauopathies, and abrogation of tau-induced microglial activation could retard progression of these disorders.
                Bookmark

                Author and article information

                Journal
                J Alzheimers Dis
                J Alzheimers Dis
                JAD
                Journal of Alzheimer's Disease
                IOS Press (Nieuwe Hemweg 6B, 1013 BG Amsterdam, The Netherlands )
                1387-2877
                1875-8908
                28 November 2020
                05 January 2021
                2021
                : 79
                : 1
                : 335-353
                Affiliations
                [a ] Department of Neurology , Mayo Clinic, Rochester, MN, USA
                [b ] Department of Neurosurgery , Mayo Clinic, Rochester, MN, USA
                [c ] Department of Physiology & Biomedical Engineering , Mayo Clinic, Rochester, MN, USA
                [d ] Department of Neuroscience , Mayo Clinic, Jacksonville, FL, USA
                [e ] Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic, Rochester, MN, USA
                Author notes
                [* ]Correspondence to: Eugenia Trushina, PhD, Department of Neurology, 200 First Street SW, Rochester, MN 55905, USA. Tel.: +1 507 284 8197; E-mail: trushina.eugenia@ 123456mayo.edu .
                Article
                JAD201015
                10.3233/JAD-201015
                7902954
                33285637
                a900a8d7-6519-4f80-924f-526dd6ba3da9
                © 2021 – The authors. Published by IOS Press

                This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 November 2020
                Categories
                Research Article

                3xtg-ad transgenic mice,alzheimer’s disease,electrophysiology,fluorodeoxyglucose f18 positron-emission tomography,human tau protein,mitochondrial complex i,small molecule therapeutics

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content191

                Cited by13

                Most referenced authors1,320