16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Central to the different forms of taxis are methyl-accepting chemotaxis proteins (MCPs). The increasing number of genome sequences reveals that MCPs differ enormously in sequence, topology and genomic abundance. This work is a one-by-one bioinformatic analysis of the almost-totality of MCP genes available and a classification of motile bacteria according to their lifestyle. On average, motile archaea have 6.7 MCP genes per genome whereas motile bacteria have more than twice as much. We show that the number of MCPs per genome depends on bacterial lifestyle and metabolic diversity, but weakly on genome size. Signal perception at an MCP occurs at the N-terminal ligand binding region (LBR). Here we show that around 88% of MCPs possess an LBR that remains un-annotated in SMART. MCPs can be classified into two clusters according to the size of the LBR. Cluster I receptors have an LBR between 120 and 210 amino acids whereas cluster II receptors have larger LBRs of 220-299 amino acids. There is evidence that suggests that some cluster II LBRs are composed of two cluster I LBRs. Further evidence indicates that other cluster II LBRs might harbour novel sensor domains. Cluster II receptors are dominant in archaea whereas cluster I receptors are prevalent in bacteria. MCPs can be classified into six different receptor topologies and this work contains a first estimation of the relative abundance of different receptor topologies in bacteria and archaea. Topologies involving extracytoplasmic sensing are prevalent in bacteria whereas topologies with cytosolic signal recognition are abundant in archaea.

          Related collections

          Author and article information

          Journal
          Environ Microbiol
          Environmental microbiology
          Wiley
          1462-2920
          1462-2912
          Nov 2010
          : 12
          : 11
          Affiliations
          [1 ] Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof Albareda, 1, 18008 Granada, Spain.
          Article
          EMI2325
          10.1111/j.1462-2920.2010.02325.x
          20738376
          a8ca5975-6161-4822-a9eb-efe8c19e8eb4
          © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
          History

          Comments

          Comment on this article

          scite_
          160
          6
          175
          0
          Smart Citations
          160
          6
          175
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content44

          Cited by61